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Abstract

Although chest X-rays (CXRs) are still a vital diagnostic tool for detecting thoracic disease,
their interpretation can be challenging because of their multilevel findings and contradictory
visual patterns. As a result, we examine how well deep convolutional neural networks (CNNSs)
with transfer learning perform automated multi-label classification of CXRs. Extensive
preprocessing and augmentation techniques were used to address class imbalance and normalise
image quality using the CheXpert dataset. Under consistent experimental conditions, several
CNN architectures, including CustomNet, DenseNet121, ResNet50, InceptionV3, and VGGL16,
were trained and evaluated. With an AUROC of 0.78 and an accuracy of 87% on test data,
DenseNet121 performs significantly better than all other models, according to a comparative
analysis of AUROC and accuracy. Additional evaluation by disease category on an individual
basis showed excellent performance for pleural effusion (AUROC 0.93) and lung opacity
(AUROC 0.91). These results indicate the promise of Dense Net-based architectures to deliver
accurate, automated diagnostic assistance to clinical radiology. The work emphasizes the utility
of transfer learning in enhancing generalization with sparse labeled data and offers pragmatic
guidance to model choice in the analysis of medical images.

Keywords: Deep learning, Multi-label classification, Chest X-ray, Transfer learning,
DenseNet, Medical image analysis

1.0 Introduction

There are two subspecialties of radiology in medicine: diagnostic radiology and interventional
radiology [1]. In diagnostic radiology, abnormalities and diseases are identified by analyzing
medical images. The most used test that is correctly and quickly interpreted to prevent potentially
fatal diseases is chest X-ray radiography. The difficulty comes when radiologists are required to
interpret these images, and their abilities are restricted by time, experience, and the need to hire a
certified radiologist. To automate and produce accurate radiology reporting, the healthcare industry
turned to deep learning algorithms [2].

These neural networks consist of layers of interconnected nodes (artificial neurons) that process
and transform input data into meaningful output. Deep learning is characterized by the depth of
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these neural networks [3]. The strength of such a connection is determined by the weights of the
variable or features that associate inputs with outputs.

Possible Advantages for Medical Fields:

These are just some of the many advantages Al is said to offer the medical field-

- More affordable treatment: Automation makes diagnosis quicker and more accurate.
Physicians can then prescribe the best courses of action or step in early to avoid sickness and
necessitating costlier care.

- More secure options: A lower risk of complications from patients receiving ineffective or
incorrect treatment is associated with more accurate diagnosis.

- More patients received care: Labs can run more tests when the time it takes to finish a
diagnostic analysis is reduced. More patients will be covered in less time as a result of this.

- Handling the "Physician Shortage' on a global scale: Many countries are concerned
about the growing gap between the demand and supply of physicians. Global shortages of doctors,
nurses, and other health workers are estimated by the WHO. Because of the scarcity of medical
schools and their limited capacity, the shortage is frequently worse in developing countries [4].
These countries also have a far higher proportion of rural and isolated areas, which exacerbates the
problem, like poor transportation. Similar to an unfinished jigsaw puzzle, the world's emerging
need for more advanced medical personnel will require time and money to train, which will make
meeting demand unlikely. Deep learning systems combined with automation offer a comparatively
faster, more scalable, and more affordable solution to salvage the situation [5].

Given the world's population expansion, we will need alternative Al-based medical workers to
assist us accomplish the sustainable development objective of delivering "Affordable, Accurate, and
Adequate Healthcare for All". After considering the trends and current advancements in deep
learning, we chose to experiment with many variants of convolutional neural networks for this
project.

We accepted this discovery and used the power of the Dense Convolutional Network (DenseNet),
which connects each layer to the next in a feed-forward fashion. We also tested with alternative
architectures to compare their relative performances using standard performance matrices such as
AUROC and Accuracy.

We will explore the major and popular transfer learning techniques and see their performances on
our Chest X-rays data. Over the past, transfer learning had been applied to improve the efficiency of
CNNs or other neural network architectures and performed positively [6]. They have several
benefits that enhance the applicability and performance of deep learning A.l. models in various
domains. By using knowledge from pre-training, models are set to better utilize limited labeled data
for different tasks. Pre-trained models serve as a strong starting point, reducing the time and
resources needed for training. Transfer learning can handle changes in data distribution, making it
useful in diverse real-world scenarios. Overall, it plays a crucial role in improving the performance
and efficiency of machine learning models in a wide variety of applications and domains [7].
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2.0 Literature Review

There has been a notable public release of large radiology image datasets in the recent past.
Utilizing these datasets has been essential to maximizing group efforts for the creation and
evaluation of machine learning models. [2], [3], [4], and [5]. The NIH Clinical Center released
more than 100,000 chest X-ray images to the scientific community in 2017. Of these, 108,948
frontal-view X-ray images were part of 32,717 unique cases. Many studies have made use of this
dataset, including Wang et al.'s [6] work, which showed how to use a unified weakly supervised
multi-label image classification to detect and spatially locate common thoracic diseases in their

paper.

Subsequent paragraphs, however, are indented. Techniques based on deep learning have been
created to categorize X-ray pictures of the chest and pinpoint potential diseases. ROC statistics and
rank correlation can be used to compare the effectiveness of several deep learning models in the
categorization of chest X-rays [7]. A number of deep learning architectures, such as an expanded
ResNet-50 architecture and a network that integrates non-image data to take use of the great spatial
resolution of X-ray data, have been studied for the classification of chest X-rays . Class activation
maps are useful for comprehending the classification procedure and for thoroughly examining the
influence of non-image features on the classification of chest X-rays For the categorization of
chest The application of numerous ResNet depths, including ResNet-38 and ResNet-101, to X-rays
can also be studied. For chest X-ray classification, studies have shown that the X-ray-specific
ResNet-38, which incorporates non-image data, produces the best overall results [7].

Furthermore, ResNet-50 has been recognised as a potent network architecture for classifying chest

X-rays that can be applied to training from scratch, fine-tuning, or transfer learning. Deep learning
methods for chest X-ray classification have gained popularity due to the availability of labelled X-
ray image archives. Several well-designed CNN architectures, including VGG, GoogleNet,
ResNet, and DenseNet, have been used to train deep learning models for CXR analysis [7][8].

Using 112,120 frontal chest X-rays from 30,805 patients, the ChestX-ray14 dataset has been used
to assess deep learning-based methods for multi-label disease classification. It's a multilabel
classification challenge because the dataset includes photos with numerous abnormalities and
images clear of disease. Three open-source datasets were also utilized in the study: the ImageNet,
ChestX-ray, and CheXpert datasets [7][8]. A thorough examination of the various transfer learning
attributes in medical image analysis is necessary to optimize the effectiveness of transfer learning
for CXR image classification. The study's findings might help develop best practices for the
effective utilization of various data sets to help alleviate the lack of training data and improve deep
learning models' performance in the medical domain [8].

In recent years, there are challenges in chest radiography, where a long-tailed distribution of
clinical findings poses difficulties for standard deep learning methods biased towards more
common classes. Proposing some effective techniques, the paper [9] employs EfficientNetV2 and
ConvNeXt as primary architectures, incorporating image size influence in architectural decisions.
To counter dataset imbalance and the multi-label nature of chest X- ray detections, the paper
utilizes many augmentations, including mosaic augmentation, and modifies label acquisition
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method, and performance is enhanced through ensemble strategies. Overall, the paper provides
aextensive review of methods addressing the long-tailed imbalance in chest X-ray datasets using
advanced techniques and architectures. DenseNet has outperformed other models that we used for
this paper later on. A chest radiograph will usually reveal a limited number of common findings
and a considerably greater number of rare findings. An experienced radiologist may learn the
visual presentation of rare illnesses by looking at a few representative examples, whereas an
algorithm requires many more. Teaching a machine to learn from a "long-tailed" distribution is
difficult since typical methods build models that are biassed towards the common classes and
perform poorly on the unusual. According to [11], the benchmark consists of two chest X-ray
datasets for 19- and 20-way thorax illness classification, with classes having as many as 53,000
and as few as 7 labelled training pictures. This new benchmark is used to evaluate both standard
and cutting-edge long-tailed learning approaches, allowing us to determine which features of these
methods are most advantageous for long-tailed medical picture categorization.

As we all know, deep neural networks are difficult to train. This study [12] introduces a residual
learning paradigm for facilitating the training of networks that are substantially deeper than those
previously used. This explicitly rewrites the layers as learning residual functions with respect to
the layer inputs rather than learning unreferenced functions. It presents thorough factual
information suggesting that these residual networks are easier to optimize and can benefit from
more depth.

3.0 Methodology

Our main focus is on developing a CNNbased model to predict the models. The approach used in
this paper involves the utilization Convolutional Neural Network(CNN) architectures for disease
prediction using chest X-ray data. To make sure the data was appropriate for training and
assessment, we first implemented preprocessing procedures. We investigate several cutting-edge
CNN architectures, including ResNet and DenseNet, with the primary goal of contrasting how
well they predict diseases. These were chosen because prior research had demonstrated their
effectiveness in medical image analysis tasks. A meticulously planned experimental setup that
includes crucial hyper parameters like learning rate and batch size is then used to train, validate,
and test the models in order to guarantee reliable performance evaluation. Performance is used to
evaluate the models’ efficacy. Our research attempts to shed light on the relative advantages and
disadvantages of various CNN architectures in relation to disease prediction using chest X-rays.

3.1 Data Collection and Exploration

For training our model, we used a version of the ChexPert chest X-ray dataset. The CheXpert
dataset is a famous benchmark dataset in medical imaging, especially for interpreting chest
radiographs. Irvin et al. introduced it in their publication, "CheXpert: A Large Chest Radiograph
Dataset with Uncertainty Labels and Expert Comparison” (2019). The dataset includes chest
radiographs (X-ray images), as well as radiologist interpretations and labelling for 14 common
thoracic diseases such as pneumonia, pleural effusion, and cardiomegaly. Each X-ray radiograph
in the dataset is accompanied by a feature vector containing the patient ID, study number, X-ray
view type, and a collection of fourteen expert-labelled observations. We clean the data to omit the
age and sex features from the equation because we are evaluating solelyon the image.
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3.2 Data Pre-processing and Augmentation

The effectiveness of CNN models for analyzing X-rays depends very much on how we prepare
data. As we initially checked the dataset, we noticed large variations in how the X-ray pictures
looked, like their resolution and brightness were totally off. To address this, we used a procedure
to standardize the pixel values in the images, making comparisons much simpler. We continued
by resizing the images uniformly to a 224x224 pixel square in accordance with the specifications
of the chosen CNN design. Since the model's strength is crucial, we added various techniques to
the data to increase its diversity. This entailed chaotically rotating, flipping, and shifting the
images at random. controlled rotation between -10 and -10 degrees, made possible by expansion
to enhance the dataset while keeping crucial diagnostic characteristics. This makes it possible for
the model to learn from a greater range of X-ray variations.

We know that every grouched fair mix of the cases; with chest illnesses, so our model wouldn't be
biased by having a lot of one kind of data, hopefully. All of these steps in preparing the data make
a good foundation for using the model to identify illnesses from X-rays, tackling challenges like
variances in the data and having only a restricted amount of examples to learn from.

The transformational pipeline was designed in such a way that there is a balanced data
augmentation with the preservation of clinically significant details. Extreme alterations such a
scrapping were avoided, there by, ensuring the retention of important clinical features within the
images. Sample images from the transformed dataset are as below:

L
]

Fig.1.Snapshotofthe X-ray images in the data set after augmentation

3.3Modelling

Our research brought us to the point that CNN architecture excels in the multi-class, multi-label
classification of image datasets. This is due to a decrease in the number of parameters. This
reduction doesn't compromise crucial features that are necessary for accurate predictions.
Consequently, wedeled into several CNN-based models, which will be explored in more detail
later. Each of these models won’t through testing using a batch size of 96 for a maximum of 40

https://doi.org/10.70454/JRICST.2026.30103 Vol. 03, No. 01, 2026 Page | 30



https://doi.org/10.70454/JRICST.2025.30103

Received: 2025-10-28 : :
Accepted: 2026-01-11 Journal of Recent Innovations in

Published Online: 2026-01-20 Computer Science and Technology
DOI: 10.70454/JRICST.2026.30103 E-ISSN: 3050-7030, P-ISSN: 30a0-7022

JRICST

A Next Generation,
s

epochs. Binary cross-entropy was used as the loss function. Adam optimizer with an starting
learning rate of 0.001, and an adaptive learning rate adjustment: multiplying it by 10 was used
when the validation loss levels off after an epoch.

3.4 Custom Net

We started by developing a basic custom CNN model. The model was built from scratch, starting
with random settings and adjusting them. The input then goes through 4 layers, and each layer
does specific tasks like identifying patterns and simplifying information. In each layer, max
pooling is done thus reducing the size and activation step using ReLU. In Figure2, you can see the
details for each layer. After going through these layers, the information heads to a fully connected
part that uses a sigmoid function. This function helps turn the raw output into probabilities, telling
us how likely it is that a chest X-ray has disease we're looking for. If the probability is found
greater than 0.50, we see it as a positive finding.

CustomNet

+————————————————_——— t————————— - — +

| Modules | Parameters |

- ST + +
ConviLayerl.0.weight 216
Conviayerl.@.bias 8
ConviLayerl.l.weight 1152
ConviLayerl.1l.bias 16
ConviLayer2.0.weight 12800
ConviLayer2.0.bias 32
ConvlLayer2.1l.weight 9216
ConviLayer2.1l.bias 32
ConviLayer3.0.weight 18432
ConvliLayer3.0.bias 64
ConviLayer3.1l.weight 102400
ConviLayer3.1l.bias 64
ConviLayer4.0.weight 204800
ConvLayer4.0.bias 128
ConviLayerd4.l.weight 147456
ConviLayer4.1l.bias 128

Linl.0.weight 7168
Linl.0@.bias 14

+r— ———————————— +
Total Trainable Params: 504126

Fig2.DetailsoftheCustomNetmodel
3.5 Dense Net

Dense Net, Densely Connected Convolutional Network, is a type of neural network architecture
known for its dense connectivity pattern, where each layer is connected to other layer in a densely
packed way. Dense blocks are made up of many units. Each unit produces a fixed-size feature
vector after packing two convolutions that are each followed by Batch Normalization and RelLU
activations. The amount of new information that the layers permit to pass through is controlled by
a parameter known as the growth rate.

Conversely, transition layers are really basic parts made to down sample the features that are
moving through the network. Each transition layer has three layers: a 1x1 convolution, a 2x2
average pooling, and a Batch Normalization layer. For this paper, DenseNet121 was trained with
initial weights from a pre-trained network on ImageNet data [13].
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Chest X-ray Pneumonia
Lung Cancer

Fibrosis
Effusion
Atelectasis

Fig3.DenseNet architecture

4.0 Results & Analysis

ResNet50

A deep residual network, often known as deep ResNet, is a type of specialised neural network that
helps with more complex deep learning tasks by allowing for better results with deeper designs.
Its effectiveness in training deep networks has received increased attention in recent years.
ResNet-50, a 50-layer deep convolutional neural network, was pre-trained using more than a
million images from the ImageNet dataset. As a result, it can classify photos into 1000 different
object categories and has developed detailed feature representations for a wide range of images.
One issue that experts regularly raise with deep networks composed of hundreds of layers is that
accuracy can get saturated and degraded. The problem of vanishing gradient worries researchers
equally. We freeze pre-trained network initial weights for the first 6 layers used for feature
extraction and only the weights of the last layer are adapted to re-train one or more layers with
samples from the X-ray dataset [12]

Inception V3

The network has a depth of 48 layers, incorporating several enhancements such as label smoothing,
factorized convolutions, and the inclusion of an auxiliary classifier to propagate label information
throughout the network. Pre-trained weights obtained from the ImageNet dataset are used to
initialize the model. To preserve the learned low-level features, the weights of the first eight layers
are frozen during the initial training phase [13].

Vggl6

The VGG network, a deeply neural network, was pre trained on an extensive dataset comprising

more than a million images from the ImageNet database. This network comes with a total of 41

layers, involving 16 layers with changeable weights, 13 convolutional layers, and 3 fully

connected layers. An adverse feature of the VGG16 Neural Network is its overwhelming number

of trainable parameters, surpassing 134 million!!! To tackle this problem, we made the choice to

freeze the initial 6 layers, thus restricting the trainable parameters to 57,000 .
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Tablel. Trainable Parameters

S.No Model Name Total Parameters Trainable
Parameters
1 CustomNet 504126 504126
2 DensNet121 6968206 6968206
3 ResNet50 23772110 264078
4 Inception 21814254 28686
5 Vggl6 134317902 57358

Model Training

We divided the training data into two sets: 80 percent training and 20 percent validation data, then
trained the model for a maximum of 40 epochs. Most of the models performed best at 20 to 25
epochs. Table 2 shows that the DenseNet model achieved the highest training AUROC of 78 and
the highest training accuracy of 87%.

Table2. Models with performance metrics

S.No Model Name AUROC Accuracy
1 CustomNet 0.740989 0.862637
2 DensNet121 0.779881 0.866486
3 ResNet50 0.716902 0.854088
4 Inception 0.650021 0.846562
5 Vggl6 0.67147 0.848543

We used unseen test data to predict the multi classifications labels and hence evaluate and compare
performances of various models. DenseNet121 performed the best overall based on test metrics.
With a ROC score of 0.78 and accuracy of 87%, this model performed well. The accuracy and
ROC values of the other models varied from 83% to 86% and 0.69 to 0.75 respectively

Table3. Models with performance metrics on test set

S.No Model Name AUROC Accuracy
1 CustomNet 0.75376 0.863197
2 DenseNet121 0.783894 0.866112
3 ResNet50 0.730819 0.845245
4 Inception 0.69211 0.829782
5 Vggl6 0.716072 0.838025

AUROC (Area the Receiver-Operatingistic) values for different labels were being assessed to
check the performance of each model. In the context of individual, Dense net 121showcaseda
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better performance, as illustrated in the Figure. The model managed to achieve AUROC scores
that ranged from 0.82 right upto 0.93 for the five labels that were included in the Stanford ML
group study[0]. Additionally, quite notably, an extraordinary performance was observed for a
select few labels such as Pleural Other(AUROC: 0.97) and Lung Opacity(AUROC: 0.91). Some
labels showed average performance like Enlarged Cardio mediastinum, showcased AUROC of
0.49.

Table4. AUROC values of different models

Model Name Label CustomNet DenseNet121 Inception ResNet50 Vggl6
Atelectasis 0.78474 0.824351 0.750568 0.75349  0.77857
Cardiomegaly 0.757884 0.834515 0.745836 0.72431 | 0.70712
Consolidation 0.841248 0.897332 0.672396 0.82662  0.81713
Edema 0.882775 0.883508 0.811875 0.83857  0.78895
EELER 0.538789 0.485358 0.512073 0.56881  0.52095

Cardiomediastinum

Lung Lesion 0.04721 0.227468 0.085837 0.09871  0.28755
Lung Opacity 0.864051 0.911229 0.782775 0.82393  0.82136
No Finding 0.865602 0.850161 0.843582 0.85419  0.87218
Pleural Effusion 0.865135 0.925552 0.780409 0.83368  0.83332
Pleural Other 0.935622 0.969957 0.849785 0.88412  0.65665
Pneumonia 0.586836 0.682522 0.373341 0.60564 = 0.4812
Pneumothorax 0.63219 0.68031 0.681416 0.61117  0.83075
Support Devices 0.854588 0.882258 0.705276 0.74892 | 0.71565
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Densenet121 gave the best accuracy for individual labels. Accuracy values for various labels.
Fracture, Pneumothorax Pneumonia, Lung Lesion and Pleural Other achieved more than 95%
accuracy.

Table5. Accuracies of different models

Model CustomNet = DenseNet121 | Inception ResNet50 ' Vggl6
Atelectasis 0.700856 0.752137 0.65812  0.675214  0.65812
Cardiomegaly 0.24359 0.713675  0.709402  0.709402 0.7094
Consolidation 0.868974 0.858974  0.858974  0.858974  0.85897
Edema 0.863248 0.863248  0.803419  0.811966  0.81624
Enlarged Cardio 0.534188 0534188 0534188 0534188  0.53419
mediastinum

Fracture 1 1 1 1 1
Lung Lesion 0.995726 0991453 0995726 0995726  0.99573
Lung Opacity 0.739816 0.782051  0.628205  0.75641  0.73932
No Finding 0.863248 0.807692  0.837607 0.858974  0.83761
Pleural Effusion 0.833333 0.871795  0.782051  0.773504  0.77778
Pleural Other 0.996726 0995726 0995726 0995726  0.99573
Pneumonia 0.965812 0965812 0965812 0.965812  0.96581
Pneumothorax 0.965812 0961538 0965812 0.965812  0.96581
Support Devices 0.777778 0769231 0.615385  0.679487  0.64103

DenseNet121 has performed relatively well as compared to the other models that we used for our
work. However, to determine which model is definitely the best depends on cases. Multiple factors
such as the overall size of your enormous dataset, available plentiful computational resources, and
the specific, unique characteristics of the significant problem you are currently working on should
be considered. It's quite often a very good and recommended practice to experiment with multiple
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various architectures and then to choose the one that significantly performs best through
validation, testing on your specific, particular task. Additionally, pre-trained models on extremely
large datasets (e.g.,ImageNet) can potentially provide a slightly good starting point and might
possibly be fine-tuned for the specific task.

We contrasted our DenseNet121-based model's performance with that of other recent studies that
used comparable datasets. Rajpurkar et al. (2018) used the CheXNet model (DenseNet121 fine-
tuned on 224x224 CXRs) and obtained an average AUROC of 0.78 on the CheXpert dataset. Using
transfer learning on the ChestX-rayl4 dataset, Baltruschat et al. (2019) reported AUROC values
ranging from 0.76 to 0.83 for different thoracic disease labels. Similarly, Nguyen-Mau et al. (2023)
combined the EfficientNetV2 and ConvNeXt architectures with advanced augmentation and
ensemble learning to achieve an AUROC of 0.81. Despite utilizing a simpler training pipeline and
fewer computational resources, our DenseNetl21 model demonstrated comparable diagnostic
strength, achieving an overall AUROC of 0.78 and accuracy of 87%. This suggests that our
framework continues to function well when clinical integration is used.

5.0 Conclusion

This work proposes an extensive assessment of deep convolutional neural networks (CNNSs) using
transfer learning for multi-label classification of chest X-rays automatically. The experiments
performed using the CheXpert dataset confirm the fact that DenseNet121 far surpasses other state-
of-the-art models, such as CustomNet, ResNet50, InceptionV3, and VGG16. DenseNet121 attained
the highest diagnostic performance with an AUROC of 0.78 and accuracy of 87%, particularly in
detecting key thoracic diseases like pleural effusion (AUROC 0.93) and lung opacity (AUROC
0.91). These results validate the excellent generalization ability of DenseNet models in learning
discriminative features from intricate radiographic textures.

The problems of class imbalance and a lack of labelled medical data were effectively resolved by
combining transfer learning with advanced data augmentation techniques, producing classification
results that were more accurate and trustworthy. In addition to increasing diagnostic precision, the
framework presented here allows for scalable implementation in actual healthcare systems with a
shortage of radiologists.

Despite the positive outcomes, more work is required to improve clinical validation, domain
adaptability, and model interpretability. In order to bring transparency and reliability to medical
decision-making, future research must take into account explainable Al (XAI) techniques,
uncertainty estimation, and attention-based mechanisms.  Clinical workflows can also be
accelerated by expanding this framework to real-time edge or cloud-based diagnostic systems.
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