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1.0 Introduction 
There are two subspecialties of radiology in medicine: diagnostic radiology and interventional 

radiology [1]. In diagnostic radiology, abnormalities and diseases are identified by analyzing 

medical images. The most used test that is correctly and quickly interpreted to prevent potentially 

fatal diseases is chest X-ray radiography. The difficulty comes when radiologists are required to 

interpret these images, and their abilities are restricted by time, experience, and the need to hire a 

certified radiologist. To automate and produce accurate radiology reporting, the healthcare industry 

turned to deep learning algorithms [2]. 

 These neural networks consist of layers of interconnected nodes (artificial neurons) that process 

and transform input data into meaningful output. Deep learning is characterized by the depth of 
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these neural networks [3]. The strength of such a connection is determined by the weights of the 

variable or features that associate inputs with outputs. 

Possible Advantages for Medical Fields: 

These are just some of the many advantages AI is said to offer the medical field- 

• More affordable treatment: Automation makes diagnosis quicker and more accurate. 

Physicians can then prescribe the best courses of action or step in early to avoid sickness and 

necessitating costlier care. 

• More secure options: A lower risk of complications from patients receiving ineffective or 

incorrect treatment is associated with more accurate diagnosis. 

• More patients received care: Labs can run more tests when the time it takes to finish a 

diagnostic analysis is reduced. More patients will be covered in less time as a result of this. 

• Handling the "Physician Shortage" on a global scale: Many countries are concerned 

about the growing gap between the demand and supply of physicians. Global shortages of doctors, 

nurses, and other health workers are estimated by the WHO. Because of the scarcity of medical 

schools and their limited capacity, the shortage is frequently worse in developing countries [4]. 

These countries also have a far higher proportion of rural and isolated areas, which exacerbates the 

problem, like poor transportation. Similar to an unfinished jigsaw puzzle, the world's emerging 

need for more advanced medical personnel will require time and money to train, which will make 

meeting demand unlikely. Deep learning systems combined with automation offer a comparatively 

faster, more scalable, and more affordable solution to salvage the situation [5]. 

Given the world's population expansion, we will need alternative AI-based medical workers to 

assist us accomplish the sustainable development objective of delivering "Affordable, Accurate, and 

Adequate Healthcare for All". After considering the trends and current advancements in deep 

learning, we chose to experiment with many variants of convolutional neural networks for this 

project. 

We accepted this discovery and used the power of the Dense Convolutional Network (DenseNet), 

which connects each layer to the next in a feed-forward fashion. We also tested with alternative 

architectures to compare their relative performances using standard performance matrices such as 

AUROC and Accuracy. 

We will explore the major and popular transfer learning techniques and see their performances on 

our Chest X-rays data. Over the past, transfer learning had been applied to improve the efficiency of 

CNNs or other neural network architectures and performed positively [6]. They have several 

benefits that enhance the applicability and performance of deep learning A.I. models in various 

domains. By using knowledge from pre-training, models are set to better utilize limited labeled data 

for different tasks. Pre-trained models serve as a strong starting point, reducing the time and 

resources needed for training. Transfer learning can handle changes in data distribution, making it 

useful in diverse real-world scenarios. Overall, it plays a crucial role in improving the performance 

and efficiency of machine learning models in a wide variety of applications and domains [7]. 

https://doi.org/10.70454/JRICST.2025.30103
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2.0 Literature Review 

There has been a notable public release of large radiology image datasets in the recent past. 

Utilizing these datasets has been essential to maximizing group efforts for the creation and 

evaluation of machine learning models. [2], [3], [4], and [5]. The NIH Clinical Center released 

more than 100,000 chest X-ray images to the scientific community in 2017. Of these, 108,948 

frontal-view X-ray images were part of 32,717 unique cases. Many studies have made use of this 

dataset, including Wang et al.'s [6] work, which showed how to use a unified weakly supervised 

multi-label image classification to detect and spatially locate common thoracic diseases in their 

paper. 

Subsequent paragraphs, however, are indented. Techniques based on deep learning have been 

created to categorize X-ray pictures of the chest and pinpoint potential diseases. ROC statistics and 

rank correlation can be used to compare the effectiveness of several deep learning models in the 

categorization of chest X-rays [7]. A number of deep learning architectures, such as an expanded 

ResNet-50 architecture and a network that integrates non-image data to take use of the great spatial 

resolution of X-ray data, have been studied for the classification of chest X-rays . Class activation 

maps are useful for comprehending the classification procedure and for thoroughly examining the 

influence of non-image features on the classification of chest X-rays For the categorization of 

chest The application of numerous ResNet depths, including ResNet-38 and ResNet-101, to X-rays 

can also be studied.  For chest X-ray classification, studies have shown that the X-ray-specific 

ResNet-38, which incorporates non-image data, produces the best overall results [7]. 

 Furthermore, ResNet-50 has been recognised as a potent network architecture for classifying chest 

X-rays that can be applied to training from scratch, fine-tuning, or transfer learning.  Deep learning 

methods for chest X-ray classification have gained popularity due to the availability of labelled X-

ray image archives. Several well-designed CNN architectures, including VGG, GoogleNet, 

ResNet, and DenseNet, have been used to train deep learning models for CXR analysis [7][8]. 

Using 112,120 frontal chest X-rays from 30,805 patients, the ChestX-ray14 dataset has been used 

to assess deep learning-based methods for multi-label disease classification. It's a multilabel 

classification challenge because the dataset includes photos with numerous abnormalities and 

images clear of disease. Three open-source datasets were also utilized in the study: the ImageNet, 

ChestX-ray, and CheXpert datasets [7][8]. A thorough examination of the various transfer learning 

attributes in medical image analysis is necessary to optimize the effectiveness of transfer learning 

for CXR image classification. The study's findings might help develop best practices for the 

effective utilization of various data sets to help alleviate the lack of training data and improve deep 

learning models' performance in the medical domain [8]. 

In recent years, there are challenges in chest radiography, where a long-tailed distribution of 

clinical findings poses difficulties for standard deep learning methods biased towards more 

common classes. Proposing some effective techniques, the paper [9] employs EfficientNetV2 and 

ConvNeXt as primary architectures, incorporating image size influence in architectural decisions. 

To counter dataset imbalance and the multi-label nature of chest X- ray detections, the paper 

utilizes many augmentations, including mosaic augmentation, and modifies label acquisition 

https://doi.org/10.70454/JRICST.2025.30103
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method, and performance is enhanced through ensemble strategies. Overall, the paper provides 

aextensive review of methods addressing the long-tailed imbalance in chest X-ray datasets using 

advanced techniques and architectures. DenseNet has outperformed other models that we used for 

this paper later on. A chest radiograph will usually reveal a limited number of common findings 

and a considerably greater number of rare findings. An experienced radiologist may learn the 

visual presentation of rare illnesses by looking at a few representative examples, whereas an 

algorithm requires many more. Teaching a machine to learn from a "long-tailed" distribution is 

difficult since typical methods build models that are biassed towards the common classes and 

perform poorly on the unusual. According to [11], the benchmark consists of two chest X-ray 

datasets for 19- and 20-way thorax illness classification, with classes having as many as 53,000 

and as few as 7 labelled training pictures. This new benchmark is used to evaluate both standard 

and cutting-edge long-tailed learning approaches, allowing us to determine which features of these 

methods are most advantageous for long-tailed medical picture categorization. 

 As we all know, deep neural networks are difficult to train.  This study [12] introduces a residual 

learning paradigm for facilitating the training of networks that are substantially deeper than those 

previously used.  This explicitly rewrites the layers as learning residual functions with respect to 

the layer inputs rather than learning unreferenced functions.  It presents thorough factual 

information suggesting that these residual networks are easier to optimize and can benefit from 

more depth. 

3.0 Methodology  

Our main focus is on developing a CNNbased model to predict the models. The approach used in 

this paper involves the utilization Convolutional Neural Network(CNN) architectures for disease 

prediction using chest X-ray data. To make sure the data was appropriate for training and 

assessment, we first implemented preprocessing procedures.  We investigate several cutting-edge 

CNN architectures, including ResNet and DenseNet, with the primary goal of contrasting how 

well they predict diseases.  These were chosen because prior research had demonstrated their 

effectiveness in medical image analysis tasks.  A meticulously planned experimental setup that 

includes crucial hyper parameters like learning rate and batch size is then used to train, validate, 

and test the models in order to guarantee reliable performance evaluation.  Performance is used to 

evaluate the models' efficacy.  Our research attempts to shed light on the relative advantages and 

disadvantages of various CNN architectures in relation to disease prediction using chest X-rays. 

 

3.1 Data Collection and Exploration 

For training our model, we used a version of the ChexPert chest X-ray dataset. The CheXpert 

dataset is a famous benchmark dataset in medical imaging, especially for interpreting chest 

radiographs.  Irvin et al. introduced it in their publication, "CheXpert: A Large Chest Radiograph 

Dataset with Uncertainty Labels and Expert Comparison" (2019).  The dataset includes chest 

radiographs (X-ray images), as well as radiologist interpretations and labelling for 14 common 

thoracic diseases such as pneumonia, pleural effusion, and cardiomegaly.  Each X-ray radiograph 

in the dataset is accompanied by a feature vector containing the patient ID, study number, X-ray 

view type, and a collection of fourteen expert-labelled observations. We clean the data to omit the 

age and sex features from the equation because we are evaluating solelyon the image. 

https://doi.org/10.70454/JRICST.2025.30103
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3.2 Data Pre-processing and Augmentation 

The effectiveness of CNN models for analyzing X-rays depends very much on how we prepare 

data. As we initially checked the dataset, we noticed large variations in how the X-ray pictures 

looked, like their resolution and brightness were totally off. To address this, we used a procedure 

to standardize the pixel values in the images, making comparisons much simpler.  We continued 

by resizing the images uniformly to a 224x224 pixel square in accordance with the specifications 

of the chosen CNN design.  Since the model's strength is crucial, we added various techniques to 

the data to increase its diversity.  This entailed chaotically rotating, flipping, and shifting the 

images at random.  controlled rotation between -10 and -10 degrees, made possible by expansion 

to enhance the dataset while keeping crucial diagnostic characteristics.  This makes it possible for 

the model to learn from a greater range of X-ray variations. 

 

We know that every grouched fair mix of the cases; with chest illnesses, so our model wouldn't be 

biased by having a lot of one kind of data, hopefully. All of these steps in preparing the data make 

a good foundation for using the model to identify illnesses from X-rays, tackling challenges like 

variances in the data and having only a restricted amount of examples to learn from. 

 

The transformational pipeline was designed in such a way that there is a balanced data 

augmentation with the preservation of clinically significant details. Extreme alterations such a 

scrapping were avoided, there by, ensuring the retention of important clinical features within the 

images. Sample images from the transformed dataset are as below: 

 

 

Fig.1.Snapshotofthe X-ray images in the data set after augmentation 

3.3 Modelling 

Our research brought us to the point that CNN architecture excels in the multi-class, multi-label 

classification of image datasets. This is due to a decrease in the number of parameters. This 

reduction doesn't compromise crucial features that are necessary for accurate predictions. 

Consequently, wedeled into several CNN-based models, which will be explored in more detail 

later. Each of these models won’t through testing using a batch size of 96 for a maximum of 40 
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epochs. Binary cross-entropy was used as the loss function. Adam optimizer with an starting 

learning rate of 0.001, and an adaptive learning rate adjustment: multiplying it by 10 was used 

when the validation loss levels off after an epoch. 

 

3.4 Custom Net 

We started by developing a basic custom CNN model. The model was built from scratch, starting 

with random settings and adjusting them. The input then goes through 4 layers, and each layer 

does specific tasks like identifying patterns and simplifying information. In each layer, max 

pooling is done thus reducing the size and activation step using ReLU. In Figure2, you can see the 

details for each layer. After going through these layers, the information heads to a fully connected 

part that uses a sigmoid function. This function helps turn the raw output into probabilities, telling 

us how likely it is that a chest X-ray has disease we're looking for. If the probability is found 

greater than 0.50, we see it as a positive finding. 

 
Fig2.DetailsoftheCustomNetmodel 

3.5 Dense Net 

Dense Net, Densely Connected Convolutional Network, is a type of neural network architecture 

known for its dense connectivity pattern, where each layer is connected to other layer in a densely 

packed way. Dense blocks are made up of many units. Each unit produces a fixed-size feature 

vector after packing two convolutions that are each followed by Batch Normalization and ReLU 

activations. The amount of new information that the layers permit to pass through is controlled by 

a parameter known as the growth rate. 

 

Conversely, transition layers are really basic parts made to down sample the features that are 

moving through the network. Each transition layer has three layers: a 1x1 convolution, a 2x2 

average pooling, and a Batch Normalization layer. For this paper, DenseNet121 was trained with 

initial weights from a pre-trained network on ImageNet data [13]. 

https://doi.org/10.70454/JRICST.2025.30103
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Fig3.DenseNet architecture 

4.0 Results & Analysis 

ResNet50 

A deep residual network, often known as deep ResNet, is a type of specialised neural network that 

helps with more complex deep learning tasks by allowing for better results with deeper designs.  

Its effectiveness in training deep networks has received increased attention in recent years.  

ResNet-50, a 50-layer deep convolutional neural network, was pre-trained using more than a 

million images from the ImageNet dataset.  As a result, it can classify photos into 1000 different 

object categories and has developed detailed feature representations for a wide range of images. 

One issue that experts regularly raise with deep networks composed of hundreds of layers is that 

accuracy can get saturated and degraded. The problem of vanishing gradient worries researchers 

equally. We freeze pre-trained network initial weights for the first 6 layers used for feature 

extraction and only the weights of the last layer are adapted to re-train one or more layers with 

samples from the X-ray dataset [12] 

 

Inception_V3 
The network has a depth of 48 layers, incorporating several enhancements such as label smoothing, 

factorized convolutions, and the inclusion of an auxiliary classifier to propagate label information 

throughout the network. Pre-trained weights obtained from the ImageNet dataset are used to 

initialize the model. To preserve the learned low-level features, the weights of the first eight layers 

are frozen during the initial training phase [13]. 

Vgg16 
The VGG network, a deeply neural network, was pre trained on an extensive dataset comprising 

more than a million images from the ImageNet database. This network comes with a total of 41 

layers, involving 16 layers with changeable weights, 13 convolutional layers, and 3 fully 

connected layers. An adverse feature of the VGG16 Neural Network is its overwhelming number 

of trainable parameters, surpassing 134 million!!! To tackle this problem, we made the choice to 

freeze the initial 6 layers, thus restricting the trainable parameters to 57,000 . 
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Table1. Trainable Parameters 

 

S.No Model Name Total Parameters 
Trainable 

Parameters 

1 CustomNet 504126 504126 

2 DensNet121 6968206 6968206 

3 ResNet50 23772110 264078 

4 Inception 21814254 28686 

5 Vgg16 134317902 57358 

 

Model Training 
We divided the training data into two sets: 80 percent training and 20 percent validation data, then 

trained the model for a maximum of 40 epochs. Most of the models performed best at 20 to 25 

epochs. Table 2 shows that the DenseNet model achieved the highest training AUROC of 78 and 

the highest training accuracy of 87%. 

 

Table2. Models with performance metrics 

 

S.No Model Name AUROC Accuracy 

1 CustomNet 0.740989 0.862637 

2 DensNet121 0.779881 0.866486 

3 ResNet50 0.716902 0.854088 

4 Inception 0.650021 0.846562 

5 Vgg16 0.67147 0.848543 

 

We used unseen test data to predict the multi classifications labels and hence evaluate and compare 

performances of various models. DenseNet121 performed the best overall based on test metrics. 

With a ROC score of 0.78 and accuracy of 87%, this model performed well. The accuracy and 

ROC values of the other models varied from 83% to 86% and 0.69 to 0.75 respectively 

 

Table3. Models with performance metrics on test set 

 

S.No Model Name AUROC Accuracy 

1 CustomNet 0.75376 0.863197 

2 DenseNet121 0.783894 0.866112 

3 ResNet50 0.730819 0.845245 

4 Inception 0.69211 0.829782 

5 Vgg16 0.716072 0.838025 

 

AUROC (Area the Receiver-Operatingistic) values for different labels were being assessed to 

check the performance of each model. In the context of individual, Dense net 121showcaseda 

https://doi.org/10.70454/JRICST.2025.30103
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better performance, as illustrated in the Figure.  The model managed to achieve AUROC scores 

that ranged from 0.82 right upto 0.93 for the five labels that were included in the Stanford ML 

group study[0]. Additionally, quite notably, an extraordinary performance was observed for a 

select few labels such as Pleural Other(AUROC: 0.97) and Lung Opacity(AUROC: 0.91). Some 

labels showed average performance like Enlarged Cardio mediastinum, showcased AUROC of 

0.49. 

 

 

Table4. AUROC values of different models 

Model Name Label CustomNet DenseNet121 Inception ResNet50 Vgg16 

Atelectasis 0.78474 0.824351 0.750568 0.75349 0.77857 

Cardiomegaly 0.757884 0.834515 0.745836 0.72431 0.70712 

Consolidation 0.841248 0.897332 0.672396 0.82662 0.81713 

Edema 0.882775 0.883598 0.811875 0.83857 0.78895 

Enlarged 

Cardiomediastinum 
0.538789 0.485358 0.512073 0.56881 0.52095 

            

Lung Lesion 0.04721 0.227468 0.085837 0.09871 0.28755 

Lung Opacity 0.864051 0.911229 0.782775 0.82393 0.82136 

No Finding 0.865602 0.850161 0.843582 0.85419 0.87218 

Pleural Effusion 0.865135 0.925552 0.780409 0.83368 0.83332 

Pleural Other 0.935622 0.969957 0.849785 0.88412 0.65665 

Pneumonia 0.586836 0.682522 0.373341 0.60564 0.4812 

Pneumothorax 0.63219 0.68031 0.681416 0.61117 0.83075 

Support Devices 0.854588 0.882258 0.705276 0.74892 0.71565 
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Densenet121 gave the best accuracy for individual labels. Accuracy values for various labels. 

Fracture, Pneumothorax Pneumonia, Lung Lesion and Pleural Other achieved more than 95% 

accuracy. 

 

 

Table5. Accuracies of different models 

 

Model CustomNet DenseNet121 Inception ResNet50 Vgg16 

Atelectasis 0.700856 0.752137 0.65812 0.675214 0.65812 

Cardiomegaly 0.24359 0.713675 0.709402 0.709402 0.7094 

Consolidation 0.868974 0.858974 0.858974 0.858974 0.85897 

Edema 0.863248 0.863248 0.803419 0.811966 0.81624 

Enlarged Cardio 

mediastinum 
0.534188 0.534188 0.534188 0.534188 0.53419 

Fracture 1 1 1 1 1 

Lung Lesion 0.995726 0.991453 0.995726 0.995726 0.99573 

Lung Opacity 0.739816 0.782051 0.628205 0.75641 0.73932 

No Finding 0.863248 0.807692 0.837607 0.858974 0.83761 

Pleural Effusion 0.833333 0.871795 0.782051 0.773504 0.77778 

Pleural Other 0.996726 0.995726 0.995726 0.995726 0.99573 

Pneumonia 0.965812 0.965812 0.965812 0.965812 0.96581 

Pneumothorax 0.965812 0.961538 0.965812 0.965812 0.96581 

Support Devices 0.777778 0.769231 0.615385 0.679487 0.64103 

 

DenseNet121 has performed relatively well as compared to the other models that we used for our 

work. However, to determine which model is definitely the best depends on cases. Multiple factors 

such as the overall size of your enormous dataset, available plentiful computational resources, and 

the specific, unique characteristics of the significant problem you are currently working on should 

be considered. It's quite often a very good and recommended practice to experiment with multiple 
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various architectures and then to choose the one that significantly performs best through 

validation, testing on your specific, particular task. Additionally, pre-trained models on extremely 

large datasets (e.g.,ImageNet) can potentially provide a slightly good starting point and might 

possibly be fine-tuned for the specific task. 

 

We contrasted our DenseNet121-based model's performance with that of other recent studies that 

used comparable datasets.  Rajpurkar et al. (2018) used the CheXNet model (DenseNet121 fine-

tuned on 224×224 CXRs) and obtained an average AUROC of 0.78 on the CheXpert dataset.  Using 

transfer learning on the ChestX-ray14 dataset, Baltruschat et al. (2019) reported AUROC values 

ranging from 0.76 to 0.83 for different thoracic disease labels.  Similarly, Nguyen-Mau et al. (2023) 

combined the EfficientNetV2 and ConvNeXt architectures with advanced augmentation and 

ensemble learning to achieve an AUROC of 0.81.  Despite utilizing a simpler training pipeline and 

fewer computational resources, our DenseNet121 model demonstrated comparable diagnostic 

strength, achieving an overall AUROC of 0.78 and accuracy of 87%.  This suggests that our 

framework continues to function well when clinical integration is used. 

5.0 Conclusion 

This work proposes an extensive assessment of deep convolutional neural networks (CNNs) using 

transfer learning for multi-label classification of chest X-rays automatically. The experiments 

performed using the CheXpert dataset confirm the fact that DenseNet121 far surpasses other state-

of-the-art models, such as CustomNet, ResNet50, InceptionV3, and VGG16. DenseNet121 attained 

the highest diagnostic performance with an AUROC of 0.78 and accuracy of 87%, particularly in 

detecting key thoracic diseases like pleural effusion (AUROC 0.93) and lung opacity (AUROC 

0.91). These results validate the excellent generalization ability of DenseNet models in learning 

discriminative features from intricate radiographic textures. 

The problems of class imbalance and a lack of labelled medical data were effectively resolved by 

combining transfer learning with advanced data augmentation techniques, producing classification 

results that were more accurate and trustworthy.  In addition to increasing diagnostic precision, the 

framework presented here allows for scalable implementation in actual healthcare systems with a 

shortage of radiologists. 

 Despite the positive outcomes, more work is required to improve clinical validation, domain 

adaptability, and model interpretability.  In order to bring transparency and reliability to medical 

decision-making, future research must take into account explainable AI (XAI) techniques, 

uncertainty estimation, and attention-based mechanisms.  Clinical workflows can also be 

accelerated by expanding this framework to real-time edge or cloud-based diagnostic systems. 
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