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Abstract

This paper focuses on deep learning strategies for the assessment of satellite images for the overall
assessment of disaster. The study primarily examines the ability to correctly identify those places
that can be affected by various classes of natural disasters. By imbuing a wide range of satellite
images with seamless integration, a new disaster detection system is designed assisted by a set of
models, a prime example of which includes the Convolutional Neural Networks (CNNs). The
above-mentioned detection system has demonstrated competency in the semantic segmentation
and examination of satellite data of increased interest in both urban and countryside vistas. In the
context of a city, the CNN model, supported by three advanced convolutional layers, max-pooling
layers, and a double fully connected layer configuration, was painstakingly trained on an
unparalleled dataset. This dataset consists of thousands of unique image patches before and after
disastrous events. These represent various disastrous events that happened all over the world, thus
enabling direct and comparative consideration of the pre- and post-disaster landscape. The
procedures that are reported here can raise the level of performance and reliability of the practices
in the Disaster Management field. It has presented an approach to analyze disaster (effect)
efficiently and in depth considering recent technology on satellite image.
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1.0 Introduction

Conventional disaster response systems have traditionally depended on field surveys and sensor-
based measurements, but these have been incapacitated by their piecemeal perspective, delayed onset
of data, and deluges of massive satellite image datasets. Just look at the 2015 Nepal earthquake, an
ordeal in which these methods’ limitations were cruelly laid bare [1]. It was in this disaster situation
that the collective work of ORCHID project and Rescue Global found a way to use satellite imaging
in mapping out the settlements in the disaster area, but manual processing and analysis of that data
was woefully slow and is an activity we can all see is a laborious process [2]. Stalling on the response
in this way can be deadly dangerous, too. Basically, in those initial hours following a disaster, prompt
action can be the difference between life and death. Well-known computational techniques and brand-
new Al approaches, which are being used in very specific fields such as object detection and scene
recognition, have now given us the chance to give disaster response a huge boost [5]. The broader
goal will be to propose an automated system for disaster detection using unlimited satellite image
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potential in a complementary way, with the precision of a deep learning algorithm combination [3].
Sophisticated algorithms such as CNN, KNN, and Random Forest are a part of our study work as an
effort to compensate for the limitations of severely constrained observation area and subjective
identification of images [6]. The systematic approach is intended to not only extend the scope of
disaster observations but also to enhance the accuracy and speed of detecting disasters on an
extremely large scale [7]. By automating satellite images, it is possible to take fast and accurate
images of a disaster-affected area and effectively and efficiently distribute relief efforts at an early
stage. This paper describes our comprehensive approach to demonstrate the game-changing potential
of emerging technology in disaster assessment, and thus represents a ray of hope during [8].

2.0 Literature Review

The results of deep learning have led to higher quality and more automated disaster damage
extraction from remote sensing images. Wang et al. (2024) [1] is one of the very few surveys deep
learning architectures for the extraction of hazard-damaged buildings with diverse remote sensing
data. Evaluation on CNNs, Vision Transformers, and hybrid models highlighted the potential of
multimodal data fusion and explainable Al techniques for robustness and interpretability in post-
disaster diagnosis.

Yang et al. (2021) [2] suggested a time-series framework for dynamic damage detection based on
deep learning. Utilizing temporal sequences of satellite imagery, their proposed model detected
temporal changes in damage patterns, facilitating real-time monitoring of disaster-stricken areas and
surpassing static detection methods.

Zhang and Chen (2021) [3] proposed a deep metric learning model based on bitemporal satellite
imagery. Their approach compared pre- and post-event image pairs to learn discriminative spatial
change representations to enhance classification accuracy and decrease false detections across
numerous disaster types.

Cha et al. (2025) [4] concentrated on the identification and evaluation of road damage due to natural
calamities with the help of deep learning and satellite images. Their CNN-model combined spatial
attention techniques with multispectral information in order to obtain high-precision road condition
mapping, even in challenging terrain.

In total, these works illustrate the shift from pixel-level damage analysis to data-driven high-level
damage assessment models. Although there has been significant improvement, issues still exist in
domain generalization, real-time use, and scarce annotated data. Future efforts should focus on
multimodal learning incorporation, cross-domain transfer, and standardized benchmark datasets for
improving scalability and robustness in automated disaster damage detection systems.

The blending of deep learning with satellite images has greatly improved damage assessment during
disasters through fast, large-scale, and automatic analysis of damaged regions. Convolutional Neural
Networks (CNNs), semantic segmentation, and change detection algorithms are extensively applied
to detect structural damage, fallen buildings, and road obstruction with high precision [11] [12] .
High-resolution before- and after-disaster images facilitate bitemporal comparison, which improves
the identification of minor damages. Current work also examines physics-informed networks, transfer
learning, and generative Al to enhance model generalizability across a wide range of disaster
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scenarios [13] [14]. Despite advancement, dataset imbalance, domain transferability, and real-time
deployment under changing geographic and environmental settings remain challenges [15].

Table 1: Summary of Recent Deep Learning Approaches for Disaster Damage Detection

Author & Key Findings /
Year Focus Area Data Used Methodology Contributions
- Multisource CNNs, . .
Building Comprehensive review;
Wang et al. remote Transformers, . .
damage : ; emphasized explainable Al
(2024) [1] ) sensing hybrid DL . .
detection and multimodal fusion
datasets models
Time-series Temporal Deep learning Enabled progressive
Yang et al. . ) o
damage satellite with temporal damage monitoring and
(2021) [2] : ) i .
etection images modeling early detection
Zhang & Bitemporal P_r e- and post . Improved change detection
: disaster Deep metric
Chen (2021) | image-based . i accuracy, reduced false
. satellite learning -
[3] detection ) positives
images
Chaetal. Road damage Multl_spectral CNN Wlth Accur_ate road damage
. satellite attention detection in complex
(2025) [4] detection ) . .
imagery mechanisms terrains

3.0 Methodology

This study is based on the xView2 xBD dataset. The xView2 Challenge [2], which embodies a vision
of enabling the automation of post-disaster damage assessments through satellite imagery, is
sponsored by the Defense Innovation Unit (DIU). The challenge seeks to speed up the process of
evaluation of satellite and airborne visual records for different kinds of structural damage caused by
natural calamity events. This challenge marks a significant step towards advancing the field of
humanitarian aid and disaster relief through computer vision technology.”

minor-damaged
ol . major-damaged

no-damage

pre-disaster
satellite imagery

post-disaster

satellite imagery label

Fig. 1. Minor and Major damages with pre- and post-disaster satellite images
Specifically termed as xBD, the dataset has been meticu- lously curated for this challenge and has
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gained recognition. Specifically referred to as xBD, the dataset has been carefully annotated for this
competition and has established itself as the largest and most diverse annotated dataset on which
structural damage can be described. The xBD dataset contains 550,230 structural annotations spread
over 19,804 square kilometers of freely available imagery, originating from over 10 countries. It
encompasses Six major types of disasters: wildfires, landslides, volcanic activities,
earthquakes/tsunamis, wind impacts, and flood damage. Such a wide variation in disaster types and
geography presents a wide range of situations for optimizing and validating machine learning
models.

The higher quality electro-optical imagery in the xBD dataset, rendered at a 0.3 meters resolution,
allows for precise analysis and more comprehensive training of models. Both pre and post-disaster
images are included in the dataset, which promotes the creation of models that can establish the
extent and type of damage, a major capability for effective disaster management and response.

The xBD set is going to be hugely beneficial not just for those competing in the xView2 Challenge,
but for other researchers and companies who want to develop algorithms for measuring building
damage via computer methods. The models and analysis generated from this dataset can be expected
to result in many real-world applications and scholarly endeavors. “They are critical within the
area of improved resource allocation, improved object identification, and to pushing established
disaster evaluation standards.”

However, in forming a machine learning model for predicting disaster scales, it is essential to
consider the whole scenario. This involves combining several preprocessing techniques, feature
engineering methods, and machine learning algorithms. Ideally, we want to build robust models that
can capture complex relationships and dynamic processes in the data. In this section of the paper,
we will delve further into the methods that are the core of the ML based disaster scaling model.

3.1 Research Methodology at a Glance: The approach was based on a set of well-known
machine learning algorithms/techniques [8] depicted in Figure 1, which have been used in the
prediction of weather. Each was selected purposefully to the specific task of predicting rainfall. The
following section presents a brief description of all algorithms used in this work:

A) Convolutional Neural Network (CNN): The CNN [3], being a specialist in image
processing, was the backbone of our disaster detection system. With its layer-based architecture,
i.e., convolutional and pooling layers, it is highly skilled in unfolding and integrating patterns from
satellite images. The architecture was highly effective in discriminating disaster-hit zones, which
achieved accuracies of 0.95 and 0.96 based on the Validation and Testing Sets, respectively. The
ability to understand spatial hierarchies in the imagery validates its applicability in determining
complex disaster conditions.

B) Region-Based Convolutional Neural Network (R-CNN) [4]: The R-CNN, being a
higher-end form of CNN, was used in light of its accurate ability to detect specific regions of interest.
Through the integration of region proposal tech- niques and CNN, R-CNN effectively localized and
categorized conclusive disaster-affected zones in the satellite imagery. It demonstrated strong
accuracy, achieving 0.93 and 0.94 on validation and Testing Sets respectively. The tech- nique of
R-CNN in dividing and examining defined regions in the imagery significantly contributed to a
detailed analysis of disaster consequences.
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C) Random Forest: The collaborative ensemble method known as Random Forest algorithm[5],
which consists on creating thousands of decision trees, was applied since it can learn from high
dimensional data and it will not overfit. It was observed that the accuracy was high in detecting
disaster struck areas with 0.99 on Validation Set and Testing Set.

D) Logistic Regression [6]: The strength of this model lies in its simplicity and clear
interpretability, and it has previously been demonstrated to be effective in detecting disaster impacts,
with an accuracy of 0.98 for Validation Set and 0.987 for Testing Set in the Off-setting. After fine
tuning its parameters using Grid Search CV it reached to an accuracy of 0.99 on both sets.

E) K-Nearest Neighbors (KNN) [7]: A non-parametric classification algorithm KNN is
among the simplest and most intuitive ones in the field of machine learning. It achieved a
satisfactory accuracy of 0.89 on both Validation and Testing Sets for classifying disaster hit area
gaining a primitive knowledge through distance-based classification.

Taken as a whole, these algorithms, selected based on the specific characteristics and capabilities,
made a considerable effect on the precise and dependable prediction of disaster events through the
analysis of pre- and post-disaster data. 1. Data Collection: The data collection phase centers on the
procurement of high-resolution satellite images from the xBD dataset, which is integral to the
xView2 Challenge. This dataset encompasses over 45,000 square kilometers of anno- tated imagery
and encapsulates an array of natural disasters occurring globally. The dataset presents both pre- and
post- disaster imagery- an indispensable aspect for evaluating the repercussions of events like floods,
earthquakes, and wildfires. To diversify our dataset, supplementary imagery is assimilated from
open-source repositories [8].

Satellite imagery pairs of
target areas

Prediction Result

8. 224x224
)y
Convolutional
Neural Networks
CNNs Damage
Detection

Pre-images.

—_—
1 224x224
H

Post-Images

Damaged Undamaged

Fig. 2. Model Damage detection

3.2. Data Exploration: During: Satellite image analysis is done in detail during the exploratory
data phase so that its intrinsic features are known. Techniques like visual analysis, statistical
markings analysis, and identification of perceived patterns are done. This helps identify the patterns
along with the intensity of damage in various categories of disasters, and development of our
machine learning models is aimed at proper disaster assessment [9].

3.3. Data Processing: There are multiple processes in the data processing which aim to prepare
the satellite image to be effectively analyzed by our machine learning algorithms [10]:

A. Image Preprocessing: Each image contained in the dataset will be preprocessed to
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normalize its schema and also resize. It includes downsampling of the images to a fixed size,
normalizing pixel intensity and smoothing out distortions and/or anomalies in the raw data.

B. Feature Engineering: Identify from images salient features representative of disaster
damages. This can be breaking down the images into tiny pieces, zooming in the region of
interest, and highlighting incremental damage signs that a model can recognize.

C. Data Augmentation: While we work on preventing the models from overfitting, we
benefit from data, by creating variations on images. We rotate, flip, and add noise to images
such that we end up with a very large dataset that covers a large set of possible scenarios.

D. Data Cleaning: It is extremely important to remove all such garbage data which could
would have mislead the model learning. This process guarantees the reliability of the
database, the ‘“cleanliness” and the focusing of the related disaster imagery. ¢ Label
Encoding: In the case of supervised learning algorithms, the labels in the public dataset are
transformed into a model readable format. Consequently, the labeled damage scores and
categories would be transformed into numerical or categorical values.

3.4. Model Election and Training for ldentification of Disasters: The choice of
appropriate machine learning algorithms (ML) constitutes the base for achieving improved
predictive ability and subsequent generalizability of the models for disaster identification. These
include Random Forests, Logistic Regression, and K-Nearest Neighbors, which are particularly
good at functioning with dense correlations and interdependencies in satellite imagery data.

It was an extremely crucial step of winnowing out the best models and calibrating them to best
distinguish disasters from satellite imagery. A very quick description of the methodologies adopted
in the model selection, training, and validation comes next:

A) Algorithm Investigation and Selection: We walked through various machine learning
algorithms, including Random Forest Classifier, Logistic Regression, and K-Nearest Neighbors
Classifier. These key algorithms in this project are chosen by their powerful categorization
competencies and efficacy in interpreting structured satellite imagery data.

B) Partitioning of Dataset and Model Fitting: The dataset was partitioned in the ratio of
70:15:15 into the Training, Validation, and Testing Sets, respectively. Model fitting was started with
the Training Set. Validation Set-It was applied for the adjustment of the hyperparameters in order
to improve the best fit model. Testing Set-It, being independent of the training scheme, was an
independent check of the model's performance.

C) Hyperparameters tuning and optimization: The models were orderly evaluated for
testing and for hyperparameter tuning. The models were conifgured based on a parameter search to
the best predictive potential for disaster detection using GridSearchCV.

D) Measurement and Evaluation of Performance: Performance Indicators such as
Precision, F1 Score, Accuracy Score and Recall have been consistently utilized for measuring the
models. The metrics applied to investigate how far the models could predict the outcome of a
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disaster when applied to sat images was used.

The following processes instrumented under model selection and training will be applicable,
although we will provide the full analytic breakdown of model accuracy in the The Results. As a
whole, the above-described method for data preprocessing, feature engineering, model selection and
training, model evaluation is employed in disaster detection based on machine learning. This
enhances not only the accuracy and robustness of the models but also the knowledge for the rational
decision makings in disaster management. Refining methodologies and strategies for disaster relief
with machine learning is an ongoing process, as the field constantly changes and advances.

4.0 Results and Discussion
The investigation carried out an in-depth analysis of ma- chine learning models for disaster detection
using satellite

Updated Model Accuracy vs False Positive Rate
1.0

m Accuracy
. False Positive Rate
0.8
0.6
0.3
0.
0.0

Random Forest Logistic Regression KINM CHMN R-CNN
Models

Scaores

]

Fig. 3. False Positive Graph of different model

imagery, specifically focusing on the Random Forest and K- Nearest Neighbors (KNN) Classifier.
The models were thor- oughly examined based on performance metrics obtained from both
validation and testing sets.

A. Performance Metrics

Performance metrics are simple numerical measures that provide insight into the potential to perform
certain tasks (e.g., disaster recognition) by a certain ML model. A number of metrics were taken
from the literature to evaluate the capacity of models in predicting. The most common Key
Performance Indicators (KPIs) are:

Precision measure The precision measure is the number of true predictions divided by the total
number of predictions. The metric gives an overall sense of if the model can be used to accurately
detect disaster-affected areas in satellite images.

B. F1 Score: The F1 Score is a good measure of the model’s performance if you need to seek a
balance between recall and precision. It combines observing a model's recall with its precision, and
the statistic is an important positive indicator when determining whether a model is successfully
finding disaster detections.

C. Precision Score: This metric indicates how many of the predicted positive values were
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actually positive. It is focused on the quality and importance of a positive models prediction in case
of disaster.

Recall Score: Recall score is presented in the form of a ratio of correctly classified true positives
by the model. Recall score is an indication of the potential of a model to classify and predict disaster-
affected areas in the appropriate manner.

Apart from these, confusion matrix was used to give a tabular representation of the performances of
models. The matrix shows true positives, true negatives, false positives, and false negatives
prediction values, which give a good summary of the classification performance of a model.

Additionally, the Grid Search Cross-Validation (CV) method was used in the choice of the
hyperparameters and in finding the best settings of all the models. The formal technique rigorously
explored a set of various hyperparameters in an endeavor to maximize the accuracy of the models
as far as their generality.

These, combined with the confusion matrix and grid search CV, allowed for an overall examination
of the ability of models in predicting, as an entire examination of their behaviors in distinguishing
disaster impacts based on satellite imagery data was possible.

Of the models that we experimented with, the K-Nearest Neigh- bors (KNN) Classifier and the
Random Forest models performed most excellently in all indicators. Even though the Random Forest
performed excellently in precision, F1 Score, accuracy, and in recall, it was, however, not chosen
because it processed large data in an ineffective way. Despite its interpretability as well as good
performance, its drawbacks in being able to instantly and efficiently process voluminous information
rendered the model less appropriate for us.

The K-Nearest Neighbors Classifier was good, although not to the extent of Random Forest. As it's
a very simple and efficient classifier to discern areas that are affected by a disaster, it was a likely
candidate. However, validation checks were conducted in order to ensure the models weren't over
fit.

5.0 CONCLUSION

This technology has been useful for working on environmental and humanitarian challenges, such as
with the satellite-based application of machine learning to disaster definition. This article is an excerpt
of what would appear to be the high potential of ML models in reinforcing the DM plans, particularly
by proper selection and evaluation of the model. The process started by meticulously harvesting and
cleaning a massive dataset from the xBD collection, as part of the xView2 Challenge. This was a
good and diverse dataset for seeding the machine learning model for training, validating, and testing.
The pre-processing and feature extraction processes were instrumental in rendering the data
information meaningful and dependable, which later affected the performance of predictive
modeling.

The cornerstone of our study is two powerful non-parametric machine learning algorithms: Random
Forest (RF) and K-Nearest Neighbors (KNN). Two models showed promising results in identifying
disaster-affected areas using satellite images. RF, an explainable method based on an ensemble,
achieved the highest results for all metrics. In addition, a simple and basic classification method in
machine learning called K-Nearest Neighbors was implemented similarly, with comparable results,
which were a little less remarkable when compared to Random Forest. For the models, we evaluated
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accuracy and computational cost and their capabilities to represent the unique challenges of satellite
image data.

Our work goes beyond the classical use cases of machine learning, providing avenues for future
investigation. Possible directions for our further studies include more sophisticated deep learning
models such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNSs),
which can enhance the accuracy of the predictive function and provide more insight into complex
disaster scenarios. They enable us to understand disasters when viewed through a timeline or multi-
loci perspectives. In addition, we recognized value in any incorporation of real-time streams of data
with environmental variables such as geo graphy and land use attributes to better portray disaster
effects. We also mentioned that interdiscipline studies, where researchers can be from environmental
science, geology as well as data science could be a potential future direction.
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