

 1Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Secure and Compressed Data Transmission Using ECC Key Sharing,

DNA Cryptography, and LZ77 Compression

Asamene Kelelom 1 , Addisu Oumer 2 , Pawan Kumar3 Beer Singh4

1,2 College of Engineering and Technology Samara University, Ethiopia.
1,2Samara University, Ethiopia

3 COER University, Roorkee, India
4Seth Vishambhar Nath Institute of Engineering & Technology, Barabanki, INDIA

Emails: asamenek@su.edu.et, addisuoumer@su.edu.et, pawan0871@gmail.com, beersinghtu@gmail.com

*Corresponding author E-mail: asamenek@su.edu.et

 This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.

1.0 INTRODUCTION

Ensuring the safety of data in cloud databases is a very complicated and demanding problem due to

the nature of the system being prone to hostile assaults, data breaches, and insecure access points. Over

the last years, many researchers have come up with a variety of security methods such as Access

Control, Intrusion Detection and Avoidance Systems, Encryption-Based Storage System, and Key

Management Techniques to enhance the data security essnvironment. With the advent of a networked

digital world, the protection of sensitive data in transmission has become the most important issue.

ABSTRACT

The need for secure, lightweight, and efficient data protection mechanisms has become paramount

in the changing environment of digital communication, especially for privacy-sensitive and

bandwidth-limited applications. This article presents a new hybrid cryptographic system that

combines three one-of-a-kind techniques in a synergistic way. Elliptic Curve Cryptography (ECC),

DNA-based cryptography, and LZ77 data compression. The framework adopts ECC for the sharing

of secret keys between the two communicative parties as its security is strong and the computational

overhead is minimal. After the session key is agreed upon, DNA cryptographic methods are used for

the encryption and decryption of the sensitive data, taking advantage of the high parallelism,

randomness, and large encoding capacity of DNA sequences. To make the transmission even more

efficient, the original text is first compressed via the LZ77 algorithm to remove redundancies prior

to encryption. The security of this combined method to withstand cryptanalytic attacks is guaranteed,

besides it allows for a significant level of data compression, thus it can be used for the secure

transmission of data in limited environments such as Internet of Things (IoT) and telemedicine. The

tests carried out confirm that the proposed protocol preserves privacy, integrity, and performance at

the same time it is storage and transmission requirements are considerably optimized.

Keywords: ECC, Security, LZ77, DNA, Data Compression, Hybrid Cryptography, Encryption and

Decryption.

https://doi.org/10.70454/JRICST.2026.30101
mailto:asamenek@su.edu.et
mailto:addisuoumer@su.edu.et
mailto:pawan0871@gmail.com
mailto:beersinghtu@gmail.com
mailto:asamenek@su.edu.et
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:asamenek@su.edu.et
mailto:addisuoumer@su.edu.et
mailto:pawan0871@gmail.com
mailto:beersinghtu@gmail.com

 2Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Cryptographic techniques are the only methods through which this can be achieved since they also

maintain the confidentiality, integrity, and authenticity of communication over the internet.

The paper entitled "Secure and Compressed Data Transmission Using ECC Key Sharing, DNA

Cryptography, and LZ77 Compression" identifies the issues that most communication systems face

with respect to confidentiality, integrity, and efficiency. This study presents a novel system that

combines Elliptic Curve Cryptography (ECC) for secure key exchange, DNA cryptography for

advanced encryption, and LZ77 compression for effective data size reduction. The reason for such an

integration is the growing demand for secure communication over bandwidth-constrained and

vulnerable networks such as those of IoT and cloud environments.

ECC is a well-known public-key cryptography technology that efficiently ensures security while using

lower key sizes, which decreases computational overhead and increases efficiency. Additionally, when

it is used with key-sharing protocols like Elliptic Curve Diffie-Hellman (ECDH), the two parties

wishing to communicate are moved from the public communication channel to the private one at the

conclusion of the session. Because of the robust basis upon which the most common forms of attacks

are minimised, it is nearly hard for an attacker to intercept the "common" key. Nonetheless, it is still

possible to accomplish lightweight execution of devices with limited resources; for example, ECC

may be utilised for secret data transfer and secure key agreements [26,27,28].

Utilising DNA sequences, DNA cryptography codes and encrypts data using the principles of

molecular biology. DNA encryption transforms digital data into nucleotide base sequences (Adenine,

Thymine, Cytosine, Guanine), in contrast to traditional binary-based cryptography. In order to

guarantee maximum security and pave the way for innovative encryption techniques, this approach

takes advantage of the very complicated and dense genetic code. In order to increase resilience and

unpredictability, which in turn address the problems of data integrity and protocol standardisation, the

most recent additions also overlay chaotic dynamics on top of the encryption process. DNA

cryptography is a new kind of secure communication that may also be utilised for data storage [29–

33].

The study used LZ77 compression, a traditional lossless compression method that finds repeated data

sequences and leverages that redundancy to represent the data with less storage without losing any

information, to increase transmission efficiency. Therefore, the system can conserve bandwidth and

reduce the delay time if the LZ77 compression is performed to the data prior to encryption or the

transmission process. In order to make it a suitable carrier of security for compressed data transfer, a

number of recent publications have examined the problems of computation sensitivity and the

possibility of optimisation to the extent of plugging solutions for cryptographic frameworks [34–37].

This work thoroughly investigates the synergy between LZ77 compression, DNA-based encryption,

and ECC key exchange. Such a combined system operates in the background to send data in a safe and

dependable way. Because it uses less bandwidth and is thus economical, it may be applied in a wide

range of scenarios. In comparison to traditional cryptosystems, the work's theoretical approach,

algorithm design, and experimental verification yield more security and improved transmission

efficiency.

The invention of ECC to accomplish effective and secure key distribution is the first item on the list of

the accomplishments. Second, as a unique method of data encryption, the study introduces the idea of

combining chaotic dynamics with DNA cryptography. Ultimately, the authors have chosen to transmit

https://doi.org/10.70454/JRICST.2026.30101

 3Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

data with lower overheads by using LZ77 compression. The primary focus of this multidisciplinary

effort is modern communication, which demands both strict security and practical efficiency.

2.0 RELATED WORK

Qazi et al. [1] proposed a method that used the Elliptic Curve Digital Signature (ECDSA) cryptographic

technique to control node memory space and secure node-to-node communication. Additionally, the

Algorithm for Wireless Secure Communication (ASCW) suggested the key management with the most

appropriate time. ASCW contributed to the improvement of node-level communication security by

reducing network and security threats. A real-world testbed was put up to verify data packet size,

greeting messages, and key generation time. Kumar and Sharma [2] described a genetic algorithm-

based ECC-key generation technique that includes uniform crossover, mutation, selection, fitness

evaluation, and chromosomal beginning. Both private and public keys were generated by the

methodology itself; the private key was selected at arbitrary from the curve's range. With an emphasis

on how it could improve cryptographic security and efficiency in environments with limited resources,

this study assesses the ECC-GA method's performance and resource utilisation. In addition, search

space and key size were taken into account.

Novel key generation and encryption techniques were developed by Suthanthiramani et al. [3] to

guarantee the security of the private information kept in cloud databases. It combined the first non-key

attribute with the primary key value's least common multiple and greatest common divisor. Elliptic

Curve Cryptography with Base100 Table, a cutting-edge method for encryption and decryption, was

presented in the study. When compared to the current cloud storage methods, the suggested model

increases data security by at least 5%. Moosavi and Izadifar [4] are thinking on a comprehensive IoT

security solution. First, a secure mutual authentication system using Elliptic Curve Cryptography

(ECC) with Quark lightweight hash design; second, secure end-to-end communication using ECC and

DNA. Messages are encrypted and decrypted using biologically generated DNA sequences in DNA-

based cryptography.

Ma and Du [5] launched an attribute-based strong designated verifier signature scheme that is

computationally efficient. To this end, they use elliptic curve encryption to minimize the computational

cost of the operations. The proposed method improves computational efficiency and, due to the use of

a more efficient access framework, it is preferred not only for better access control, but also for

resource-limited cloud end-users situations. Hagras [6] have introduced novel authenticated public key

elliptic curve based on deep convolutional neural network (APK-EC-DCNN) targeted for image

encryption in cybersecurity. The scheme features the use of elliptic curve discrete logarithmic problem

to secure key exchange and adopts a chaotic system to increase the security, which leads to fast and

robust encryption and, at the same time, the good performance of the scheme in comparison with the

existing ones. Kumar et al. [7] presented a hybrid encryption scheme that integrates DNA

Cryptography with Elliptic Curve Cryptography (ECC) and exploits the high randomness of DNA

coding and the strong security of ECC. The method greatly exceeds the existing methods and achieves

higher values of such metrics as entropy, correlation coefficient, and PSNR. The paper [8] proposes a

DNA-based lightweight cryptography system (DNA-LWCS) that enhances the IoT communication

security by using ellipse curve encryption (ECC) along with minor encryption techniques. In this

system, three essential keys are extracted from publicly available DNA sequences that together

generate a private key. The lightweight design of the system not only ensures the integrity and

confidentiality of the IoT data exchanges but also does not put a significant burden on the system

resources, thus it is appropriate for IoT applications. Mukherjee et al. [9] have proposed a Genetic

Algorithm method for the improvement of weak DNA-based cryptographic keys that can help to

https://doi.org/10.70454/JRICST.2026.30101

 4Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

overcome security problems caused by the redundant and observable patterns of the keys. This method

implies the alteration of fitness functions and the use of genetic agents designed for DNA crypto

operations. The authors claim that in the original population of 25 x 25 DNA keys 14 weak keys have

been found, and they suggest a way of generating up to 8 new populations. Berezin et al. [10] The

bioeconomy depends on the synthetic DNA sequences for the verification. DNA watermarks can hold

the identification information and improve the communication through error correction and encryption

procedures. Innovations in the digital signature methods make it possible not only public authentication

of unaltered sequences, but also self-documentation of synthesized DNA. Special concerns for GMOs

are necessary if we want to have public verification, establish authorship, facilitate traceability, and

detect illicit usage. Zheng et al. [11] A new DNA motif with both enthalpy and entropy features has

been designed. It is used for biosensing and information encryption. The pH-responsive A+/C DNA

motif is capable of programmable changes, which affect the entropic parts and the enthalpic control.

The method is confirmed by thermodynamic studies, thus it can precisely optimize the performance of

the motif. The prepared DNA motifs have been turned on to glucose biosensing and crypto-

steganography systems, thus they can be developed in both fields.

Patel and Veeramalai [12] have proposed a safe image transmission method by merging chaotic maps,

Halton sequences, a 5D hyper-chaotic system, and DNA encoding in a picture encryption technique.

To create the HaLT map, which is a chaotic map, chaotic maps were combined with the Halton

sequence, which was used for the cryptography of an initially scrambled image. The operation of

encryption has multiple tiers of obfuscation and, for that reason, uses a 5D hyper-chaotic map to

generate the random sequences that are responsible for ensuring a higher security level.

Chen et al. [13] have devised a two-stage system for DNA sequencing data compression, which

includes repacking the original data into a binary stream and using an LZMA encoder. The method

was planned to be implemented in an extremely compressed LZMA stream for which LZMA was

accelerated by FPGA to get the performance enhancement. The utility "repaq" was introduced as a

lossless, non-reference compressor for the FASTQ format files that can achieve better compression

ratios than the existing FASTQ compressors. Besides, the design is also suitable for other sequencing

data compression methods.Hong and Boucher et al.[14] (Year) provide a comprehensive evaluation

of the evolutions of LZ77-based compression algorithms and their variants, with a particular focus on

genetic data. The authors delineate the difficulties caused by highly repetitive nature of genetic

sequences and also survey the effectiveness of various methods, e.g., prefix-free parsing and AVL

grammars, in improving both compression ratios and computational speed. By employing the inherent

redundancy in genomic data, these methods show dramatic enhancements over conventional ones.

Besides merging advanced compression methods, this article serves as a resource hub directing new

research paths in the field of genomics.

Nishimoto and Tabei [15] have introduced efficient algorithms for the non-overlapping Lempel-Ziv-

77 factorization calculation as well as the longest preceding non-overlapping factor table calculation

that use succinct suffix tree representations. Their solutions operate within a small space model and

address issues of huge sequence processing. Moreover, the paper also presents substring compression

requests for Lempel-Ziv-78 factorization, which can be subject to a logarithmic multiplicative delay

depending on the suffix tree implementation. Major contributions include advancements in substring

compression searches, LPnF table computation, and use of suffix trees for non-overlapping Lempel-

Ziv factorizations.Kempa and Langmead [16] have presented a space-optimized LV grammar

construction from LZ77 parses, which achieves Re-Pair competitive sizes while allowing faster RL-

https://doi.org/10.70454/JRICST.2026.30101

 5Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

BWT computation by interaction with modern LZ77 techniques. This [17] work is of profound

theoretical value for space-efficient LZ factorization and clearly has potential applications in both

genomics and data compression. Despite the fact that the technical scope is quite impressive, making

it more accessible and subjecting it to empirical testing would increase its impact significantly. It is

very well suitable for publication in the Algorithms journal, subject to minor modifications facilitating

readability and usability.Saxena and Kumar have [21] proposed an innovative and efficient, it proposes

a hybrid security framework such that biometric hashing, mutual authentication of ElGamal

encryption, and fuzzy logic. DNA + Palliér hybrid cryptography nested by Saxena and Kumar [22], It

has been demonstrated to security, significantly reduce bandwidth, and improve encryption/

decryption performance compared with existing methods. Thus, it is the most suitable way of secure

information exchange over an insecure network. The three-tier hybrid encryption framework was the

invention of combines AES, RSA, and ECIES to greatly improve the security of data while

computation time is reduced as compared with traditional ECIES, making this technology highly

appropriate for secure digital communication [23]. Encryption is a very significant key exchange

security upgrade and proposes exponentially stronger hybrid keys, thus AES + Paillier has become a

very powerful hybrid cryptography model [24]. Dual-phase Hypervisor Controller employing EM

clustering and Fuzzy Time Series analysis significantly enhances the DDoS detection accuracy in the

cloud environment, thus, it can outperform existing IDSs with higher detection rates and lower false

negatives [25].

3.0 BACKGROUND

Elliptic Curve Cryptography (ECC) is founded on the generation of secure key pairs for digital

signatures, encryption, and key exchange. Whereas RSA utilizes large integers, ECC keys are derived

from points on an elliptic curve, providing the same security with considerably shorter key lengths.

An elliptic curve over a finite field is defined by:

 y2=x3+ax+b(mod p)

where:

p is a large prime (for prime fields) or 2m (for binary fields).

a and b are coefficients defining the curve.

The curve must be non-singular (4a3+27b2≠0).

The order n of base point on the curve G (smallest integer where nG=O, the point at infinity) must be

a large prime to resist attacks.

Private Key (Kₓ): A randomly selected integer dd where 1≤ Kₓn−1.

Public Key (Ky): Computed as Q=d×G (scalar multiplication of G by d).

Choose a cryptographically secure random number d within [1,n−1].

Compute the public key Q=d×G using elliptic curve point multiplication.

Output:

Private key: Kₓ (kept secret)

https://doi.org/10.70454/JRICST.2026.30101

 6Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Public key: Ky (shared publicly)

3.1. DNA CRYPTOGRAPHY

DNA Cryptography is the science of hiding digital information inside DNA.The individual character

of the DNA sequence makes dissimulation, encryption and indirect encryption of sequence-based

information in the DNA sequence possible. Mimicking the biological DNA’s information storage

capacity, which can hold large volumes of information efficiently, this method uses the four

nucleotides Adenine (A), Thymine (T), Cytosine (C), and Guanine (G) as a novel form of data’s

representation and transformation. The algorithm of DNA cryptography typically involves encoding

data into DNA sequences, applying biological or mathematical operations, and then decoding the

result. While implementations can vary, most DNA cryptography algorithms follow these core steps

[18,19]:

General Steps in a DNA Cryptography Algorithm

 Data Encoding

Convert plaintext into a binary format.

Map binary data to DNA bases (A, T, C, G) using a predefined encoding rule. For example, 00

= A, 01 = C, 10 = G, 11 = T.

Apply various DNA-inspired operations, such as:

Substitution: Replace DNA bases according to a key or rule.

Complementation: Use base-pairing rules (A↔T, C↔G) to transform the sequence.

Permutation/Scrambling: Rearrange the order of DNA bases or blocks to increase

confusion.

Algebraic Operations: Perform arithmetic or logical operations on DNA sequences (e.g.,

XOR, addition).

Encryption Process

Combine DNA sequence operations with key-based transformations to produce the encrypted

DNA sequence.

Decryption Process

Reverse the DNA operations using the correct keys and rules to recover the original DNA

sequence.

3.2. Lz77 DATA COMPRESSION

The LZ77 data compression algorithm is a dictionary-based, lossless compression method that

encodes repeated sequences in data as references to previous occurrences within a sliding window.

Here’s a step-by-step outline of the LZ77 algorithm [20]:

https://doi.org/10.70454/JRICST.2026.30101

 7Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

LZ77 Compression Algorithm Steps

Initialize Buffers: Maintain a search buffer (the sliding window of recently processed data) and

a look-ahead buffer.

Symbol Description

S Input sequence (string or byte stream)

i Current position in the input sequence

W⊂S Search buffer (window before position i)

L⊂S Look-ahead buffer (window starting at position i)

Ti Encoded triple at position i, i.e., (o,ℓ,c)

Process Input: For each position in the input, search the search buffer for the longest match with

the prefix of the look-ahead buffer.

Match Found in the Search Buffer

Let:

m ∈ W be the longest match for a prefix of L

o be the offset of the match: o = i − position(m)

ℓ be the length of the matched substring: ℓ = |m|

c be the next symbol following the match in the look-ahead buffer: c = S[i + ℓ]

Then the encoded triple is: Ti = (o, ℓ, c)

Case 2: No Match Found

If no match is found:

o = 0

ℓ = 0

c = S[i]

Then the encoded triple is: Ti = (0, 0, S[i])

4.0 Methodology

Symbol Description

E(Fp) Elliptic curve defined over a finite field Fp

G Generator point of the elliptic curve E

∞ Point at infinity (identity element for elliptic curve addition)

a, b Coefficients of the elliptic curve equation: 𝑦² = 𝑥³ + 𝑎𝑥 + 𝑏

n Order of the subgroup generated by G

h Cofactor, computed as h = # E(Fp)/ n

K Key space (set of all valid ECC private keys)

https://doi.org/10.70454/JRICST.2026.30101

 8Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

M Message space (set of all valid plaintext messages)

Kₓ ECC private key (randomly selected from key space K)

Ky ECC public key, computed as Ky = Kₓ ⋅ G

M∈ M A plaintext message from the message space

BM Binary representation of the message M

DM DNA sequence representation derived from binary message 𝐵M

BK Binary representation of the public key Ky

B'K Padded or repeated binary key to match the length of 𝐵M

BD Binary form of the DNA sequence 𝐷ᴹ

BE Encrypted binary sequence after processing

DE Encrypted DNA sequence

C Final compressed ciphertext (byte data)

4.1 Main Execution Flow

1. Input message

2. Generate (sk, vk) = GenerateECCKeys()

3. encrypted_dna = DNAEncrypt(message, vk)

4. compressed_data = CompressDNA(encrypted_dna)

5. decompressed_dna = DecompressDNA(compressed_data)

6. decrypted_msg = DNADecrypt(decompressed_dna, sk)

7. Output decrypted_msg

4.2 ZlIB Comression and decompression pseudo code:

1. Choose curve E(Fp) (e.g., NIST P-256).

2. Generate private key Kx ∈ Zp.

3. Compute public key: Ky = Kx · G.

4. Return (Private key Kx, Public key Ky).

5. Convert each character c ∈ M to 8-bit binary.

6. Concatenate all binary values to get BM .

7. Return (Binary String BM).

8. Define map: ’00’ → A, ’01’ → T, ’10’ → C, ’11’ → G.

9. Apply mapping to 2-bit segments of BM to get DM .

https://doi.org/10.70454/JRICST.2026.30101

 9Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

K

K

K

K

10. Return DM .

11. Convert M → BM using TextToBinary().

12. Convert BM → DM using BinaryToDNA().

13. Convert Ky → BK (binary form).

14. Pad BK to match length of BM : B′= Repeat(BK).

15. Convert DM → BD (reverse map to binary).

16. Compute: BE = BD ⊕ B′

17. Convert BE → DE using BinaryToDNA().

18. Return DE.

19. Convert D to UTF-8 bytes.

20. Compress using zlib ⇒ C.

21. Return C.

The sends the encrypted and compressed message. The encrypted message travels over the networks.

Due to compressed encrypted message size will be less other than without compressed encrypted

message. The receiver receives the message, firstly the receiver will decompressed the message

before decrypted. And follows following algorithm that are described below.

1. Decompress C using zlib.

2. Decode UTF-8 to obtain D.

3. Return D.

1. Compute Ky = Kx · G and convert to BK.

2. Pad BK to match length of DE → B′ .

3. Convert DE → BE.

4. Compute: BD = BE ⊕ B′ .

5. Convert BD → M using BinaryToText().

6. Return M

The algorithm derives a binary key from Kx by multiplying it with G, then pads it to match the

encrypted data length. It converts the encrypted data into binary and performs an XOR operation

with the padded key to get the decrypted binary form. Finally, it transforms this binary data into

readable text and returns the original message.

5.0 RESULT AND DISCUSSION

Encrypted size scales deterministically with the original here: every encrypted output is exactly 4×

the original message size, while compression varies by content and becomes more effective as the

message grows. Compressed size starts larger than the original for very small inputs, then drops

below the original after roughly 2 KB and trends toward about 42% of the original by ~8 KB.

Table 1. comparison between message size, encrypted message size and compressed data

size in bytes.

Original Message Encrypted Message Compressed Message

30 bytes 120 bytes 68 bytes

https://doi.org/10.70454/JRICST.2026.30101

 10Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

61 bytes 244 bytes 109 bytes

122 bytes 488 bytes 191 bytes

244 bytes 976 bytes 352 bytes

488 bytes 1952 bytes 664 bytes

977 bytes 3908 bytes 1265 bytes

1954 bytes 7816 bytes 1903 bytes

3909 bytes 15636 byte 2306 bytes

5865 bytes 23460 bytes 2885 bytes

7819 bytes 31276 bytes 3291 bytes

The encrypted size can be computed using a simple formula where the encrypted data length is always

four times the original message size. For example, if the original message is 977 bytes, the encrypted

size will be 4 × 977 = 3908 bytes. Estimating the compressed size is less straightforward because it

depends on the content and its redundancy. There is no fixed formula for compression, so the best

approach is to use empirical ratios derived from observed data and interpolate between known values.

First, sort the data by original size, then identify the two original size entries that bracket the message

size you want to estimate. After that, perform a linear interpolation based on the compression ratios

(compressed size divided by original size) that are shown in tables. As an example, small messages

have a compression ratio of more than 1, which means they can be initially expanded when

compressed, but the ratio decreases significantly as the message size increases. The data-derived

ratios indicate that the compression ratio is about 2.27 at the very small message (30 bytes) and it

gradually goes down to less than 1 around 2 KB and then it stabilizes between approximately 0.4 and

0.6 for the messages that are larger than several KB. In other words, compression becomes more and

more efficient as the message size gets larger, thus the data size is being reduced to about 40-60% of

the original. To put it simply, encryption is almost always expanding the data size by a factor of four,

while compression efficiency gets better with the length and the content of the message, so an

estimation from empirical data is needed to be accurate.

Table 2. comparison between encryption time, decryption time, data compression time and

data decompression time in microseconds.

EncryptionTime DecryptionTime Compression Time Decompression Time

1095 µs 1147 µs 95 µs 21 µs

1779 µs 1126 µs 67 µs 18 µs

3597 µs 3258 µs 72 µs 17 µs

6586 µs 4573 µs 119 µs 27 µs

12843 µs 10854 µs 143 µs 51 µs

28753 µs 18349 µs 403 µs 40 µs

56085 µs 37343 µs 607 µs 40 µs

109375 µs 68676 µs 865 µs 50 µs

159423 µs 135745 µs 1397 µs 1818 µs

217820 µs 140449 µs 1427 µs 79 µs

The table shows a clear trend in the computational times for encryption, decryption, compression,

and decompression across varying data sizes or complexities.

https://doi.org/10.70454/JRICST.2026.30101

 11Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

5.1 Encryption and Decryption Times:

Both encryption and decryption times increase substantially with the size and complexity of the data.

Encryption times rise from about 1,095 µs to over 217,820 µs, demonstrating a near-exponential

growth as data scales. Decryption times also increase from around 1,147 µs to 140,449 µs, but

decryption is generally faster than encryption for larger datasets. This is typical as encryption often

involves more complex computations than decryption.

5.2 Compression and Decompression Times:

Compression times are still pretty low compared to encryption and decryption, starting at 67 µs and

going up to 1,427 µs. This means that compression doesn't use as much processing power, but it still

works with larger amounts of data. Decompression times are always the fastest, usually less than 100

µs, with one exception at 1,818 µs. This means that decompression is very well optimised and works

very quickly, usually faster than any other operation.

5.3 Performance Insights:

The most time-consuming operation in the process is encryption, while decryption is resource-

intensive but usually faster than encryption. Compression and decompression are significantly faster,

and decompression imposes the least computational resource demand. Interestingly, at the data point

corresponding to 159,423 µs encryption time, there is a sudden increase in decompression time, which

may indicate specific variations in data characteristics or processing overhead at that scale. From such

performance characteristics, system design and optimization should focus mainly on enhancing the

efficiency of encryption and decryption, as these have the greatest impact on processing time, whereas

compression and decompression, since much faster, might have a lesser effect on overall throughput.

Table 3. comparison between memory utilization during encryption, decryption

compression and decompression.

Encryption Decryption Compress Decompression

14.03 KB 13.34 KB 293.81 KB 23.02 KB

27.26 KB 26.21 KB 293.81 KB 23.02 KB

53.49 KB 51.73 KB 293.81 KB 23.02 KB

104.02 KB 100.82 KB 293.81 KB 23.02 KB

207.22 KB 201.17 KB 293.81 KB 23.02 KB

414.42 KB 402.64 KB 293.81 KB 23.02 KB

829.49 KB 806.26 KB 293.81 KB 23.71 KB

1661.84 KB 1615.7 KB 293.81 KB 31.34 KB

2472.02 KB 2402.94 KB 293.81 KB 119.11 KB

3330.20 KB 3238.23 KB 293.81 KB 119.11 KB

The table 3 shows, how much memory is used during encryption, decryption, compression, and

decompression. The amount of memory needed for encryption and decryption grows a lot with the

size of the data. For small inputs, it starts at about 14 KB and goes up to

for the biggest data sizes, more than 3,330 KB. Encryption usually uses a little more memory than

https://doi.org/10.70454/JRICST.2026.30101

 12Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

decryption, but the difference between the two is still small and stays the same across all data sizes.

The amount of memory used for compression is always about 293.81 KB across all tested data

points. This means that the compression algorithm needs a constant amount of memory, no matter

how big the input is. This could be because of an internal buffer or a fixed algorithmic design. The

amount of memory used for decompression is also low and stable, changing only a little from about

23 KB to 119 KB as the size of the data grows. This shows that decompression uses resources in

an efficient and predictable way. The table shows that the memory needs for encrypting and

decrypting data grow in direct proportion to the size of the data. On the other hand, the memory

needs for compressing and decompressing data stay about the same and low. This means that, in

terms of memory resources, it is important to make the processes of encrypting and decrypting as

efficient as possible when working with large data sets. Compression and decompression, on the

other hand, are less likely to cause memory problems.

6.0 CONCLUSION

These findings indicate that encryption and decryption are the significant computational and memory

bottlenecks in any secure data processing workflow, and it is there that targeted optimizations must

be done to achieve efficiency for large-scale applications. The compression and decompression steps

are important in reducing data size and transmission bandwidths but have predictable resource usage

and much more modest, which are less likely to constrict system performance.But additional

investigation could be done on making encryption algorithms or acceleration methods that are more

efficient and lower the high time and memory costs of cryptographic processing. Also, adaptive

compression techniques that better fit the characteristics of the data may improve the use of storage

and networks even more without slowing things down. This effort will set a basic standard for

finding the right balance between security, speed, and resource use, which will help make secure

data transmission systems even better.

Author Contributions

All authors contributed equally to the conception and design of the study.

Asamene Kelelom and Addisu Oumer developed the cryptographic framework and implemented

the ECC–DNA–LZ77 methodology. Pawan Kumar and Beer Singh carried out performance

evaluation, analysis of results, and manuscript drafting. All authors reviewed, revised, and approved

the final version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

https://doi.org/10.70454/JRICST.2026.30101

 13Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

References

[1] R. Qazi, K. N. Qureshi, F. Bashir, N. U. Islam, S. Iqbal, and A. Arshad, “Security protocol using

elliptic curve cryptography algorithm for wireless sensor networks,” J. Ambient Intell.

Humanized Comput., vol. 12, pp. 547–566, 2021.

[2] S. Kumar and D. Sharma, “Key generation in cryptography using elliptic-curve cryptography and

genetic algorithm,” Eng. Proc., vol. 59, no. 1, p. 59, 2023.

[3] P. Suthanthiramani, S. Muthurajkumar, G. Sannasi, and K. Arputharaj, “Secured data storage and

retrieval using elliptic curve cryptography in cloud,” Int. Arab J. Inf. Technol., vol. 18, no. 1, pp.

56–66, 2021.

[4] S. R. Moosavi and A. Izadifar, “End-to-end security scheme for e-Health systems using DNA-

based ECC,” in Proc. Silicon Valley Cybersecurity Conf., Cham, Switzerland: Springer, Dec.

2021, pp. 77–89.

[5] R. Ma and L. Du, “Efficient attribute-based strong designated verifier signature scheme based on

elliptic curve cryptography,” PLoS One, vol. 19, no. 5, p. e0300153, 2024.

[6] E. A. Hagras, S. Aldosary, H. Khaled, and T. M. Hassan, “Authenticated public key elliptic curve

based on deep convolutional neural network for cybersecurity image encryption application,”

Sensors, vol. 23, no. 14, p. 6589, 2023.

[7] V. N. Kumaran et al., “A secure medical image encryption technique based on DNA cryptography

with elliptic curves,” Sci. Rep., vol. 15, no. 1, pp. 1–18, 2025.

[8] S. Aqeel, A. S. Khan, I. A. Abbasi, F. Algarni, and D. Grzonka, “Enhancing IoT security with a

DNA-based lightweight cryptography system,” Sci. Rep., vol. 15, no. 1, p. 13367, 2025.

[9] P. Mukherjee et al., “Best fit DNA-based cryptographic keys: The genetic algorithm approach,”

Sensors, vol. 22, no. 19, p. 7332, 2022.

[10] C. T. Berezin, S. Peccoud, D. M. Kar, and J. Peccoud, “Cryptographic approaches to

authenticating synthetic DNA sequences,” Trends Biotechnol., 2024.

[11] L. L. Zheng et al., “Enthalpy and entropy synergistic regulation–based programmable DNA

motifs for biosensing and information encryption,” Sci. Adv., vol. 9, no. 20, p. eadf5868, 2023.

[12] S. Patel and T. Veeramalai, “Image encryption using a spectrally efficient Halton logistics tent

map and DNA encoding,” Entropy, vol. 24, no. 6, p. 803, 2022.

[13] S. Chen et al., “Efficient sequencing data compression and FPGA acceleration based on a two-

step framework,” Front. Genet., vol. 14, p. 1260531, 2023.

[14] A. Hong and C. Boucher, “Enhancing data compression: Recent innovations in LZ77

algorithms,” J. Comput. Biol., 2025.

[15] T. Nishimoto and Y. Tabei, “LZRR: LZ77 parsing with right reference,” Inf. Comput., vol. 285,

p. 104859, 2022.

https://doi.org/10.70454/JRICST.2026.30101

 14Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

[16] D. Kempa and B. Langmead, “Fast and space-efficient construction of AVL grammars from the

LZ77 parsing,” in LIPIcs–Leibniz Int. Proc. Informatics, vol. 204, 2021, p. 56.

[17] D. Köppl, “Non-overlapping LZ77 factorization and LZ78 substring compression queries with

suffix trees,” Algorithms, vol. 14, no. 2, p. 44, 2021.

[18] N. Dhamala and K. P. Acharya, “A comparative analysis of DES, AES and Blowfish based DNA

cryptography,” Adhyayan J., vol. 11, no. 11, pp. 69–80, 2024.

[19] X. Xue, D. Zhou, and C. Zhou, “New insights into the existing image encryption algorithms

based on DNA coding,” PLoS One, vol. 15, no. 10, p. e0241184, 2020.

[20] R. K. Giri et al., “An innovation analysis of LZ77 and LZ78 compression algorithms for data

compression & source coding,” in Proc. 15th Int. Conf. Comput. Commun. Netw. Technol.

(ICCCNT), Kamand, India, 2024, pp. 1–5.

[21] V. Saxena and P. Kumar, “Secure transaction of digital currency through fuzzy based

cryptography,” Indian J. Sci. Technol., vol. 16, no. 37, pp. 3148–3158, 2023.

[22] P. Kumar and V. Saxena, “Nested levels of hybrid cryptographical technique for secure

information exchange,” J. Comput. Commun., vol. 12, no. 2, pp. 201–210, 2024.

[23] P. Kumar, V. Saxena, and K. V. Singh, “Analysis of hybrid cryptography for secure exchange

of information,” Int. J. Comput. Appl., vol. 185, no. 4, pp. 37–42, 2023.

[24] P. Kumar and V. Saxena, “Hybrid cryptography for security key exchange through AES and

Paillier,” Eur. Chem. Bull., vol. 12, no. 10, pp. 3913–3921, 2023.

[25] S. Kumar et al., “Securing cloud-based systems: DDoS attack mitigation using hypervisor-

intrusion detection approach,” Procedia Comput. Sci., vol. 259, pp. 1366–1375, 2025.

[26] M. Pundir and A. Kumar, “An efficient conference key agreement protocol suited for resource

constrained devices,” J. Parallel Distrib. Comput., vol. 196, p. 105011, 2025.

[27] A. Kumar and M. Hussain, “Secure ECC based key exchange mechanism for devices in IoT

networks,” in Proc. 14th Int. Conf. Contemporary Comput., Aug. 2022, pp. 175–179.

[28] Z. Qin et al., “An efficient key management scheme based on ECC and AVL tree for large scale

wireless sensor networks,” Int. J. Distrib. Sens. Netw., vol. 11, no. 9, 2015.

[29] X. Huang et al., “Towards next-generation DNA encryption via an expanded genetic system,”

Nat. Sci. Rev., vol. 12, no. 4, Apr. 2025.

[30] A. Kaushik and S. Satvika, “The chaotic dynamics of DNA: A survey on DNA cryptography,”

Int. J. Comput. Appl., vol. 187, no. 16, pp. 29–37, Jun. 2025.

[31] V. N. S. Kumaran et al., “A secure medical image encryption technique based on DNA

cryptography with elliptic curves,” Sci. Rep., vol. 15, p. 20003, 2025.

[32] T. Mahjabin et al., “A survey on DNA-based cryptography and steganography,” IEEE Access,

vol. 11, pp. 116423–116451, 2023.

https://doi.org/10.70454/JRICST.2026.30101

 15Page | 01, 2026, No. Vol. 03 10.70454/JRICST.2026.30101i.org/https://do

Received: 2025-10-24

Accepted: 2026-01-11

Published Online: 2026-01-20

DOI: 10.70454/JRICST.2026.30101

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

[33] L. Chu et al., “A review of DNA cryptography,” Intell. Comput., vol. 4, p. 0106, 2025.

[34] J. Blocki, S. Lee, and B. S. Y. Garcia, “Differentially private compression and the sensitivity of

LZ77,” arXiv preprint arXiv:2502.09584, 2025.

[35] Y. Huang, A. Song, C. Guo, and Y. Yang, “ASIC design of LZ77 compressor for computational

storage drives,” Electron. Lett., vol. 59, no. 22, p. e13000, 2023.

[36] R. K. Giri et al., “An innovation analysis of LZ77 and LZ78 compression algorithms for data

compression & source coding,” in Proc. 15th ICCCNT, Kamand, India, 2024, pp. 1–5.

[37] J. Blocki, S. Lee, and B. S. Y. Garcia, “Differentially private compression and the sensitivity of

LZ77,” arXiv preprint arXiv:2502.09584, 2025.

https://doi.org/10.70454/JRICST.2026.30101

