

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 1

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Variational Autoencoder Model for Image Processing Methods in

Game Design

Riya Sharma*1 , Kapil Kumar 2

1Student, College of Smart Computing, COER University, Roorkee.
2Assistant Professor, College of Smart Computing, Roorkee, COER University, Roorkee.

*Corresponding Author Email: riyasharma1677@gmail.com

 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly

cited.

1. Introduction

In the recent past, artificial intelligence and game design have woven neatly together to result in the creation

of a new realm of automated content generation; the visual one in particular. The VariationalAutoencoder

(VAE) model emerged as one among the various new techniques that have gained much popularity in terms

of generative approaches to learn and synthesise the complex structures of images (Akkemet al. 2024) [1].

Making use of this framework, VAEs provide us with a probabilistic approach to encoding input images into

a continuous latent space and control and diverse image generation. However, a characteristic of this is that

they are very valuable for game design because of the need for visual variety and coherence.

The image processing techniques are important in game development, which help people carry out tasks like

texture enhancement, environment rendering, character modeling, etc (Girinet al. 2020) [2]. Through the

Abstract

This paper investigates the use of Variational Autoencoders (VAEs) as a deep learning-based generative

framework for AI-assisted image processing in game design, focusing on the procedural generation of

stylized visual assets. Its application in AI-assisted image generation in game design for the generation of

diverse stylized visual assets is explored in this paper. In order to learn stylistic consistent content and

generate new art for the Ethereal Monsters game, we propose a deep learning-based generative approach

using VAEs to learn latent representations of existing game art. Pre-processing of a curated dataset of

10,000 game sprites spans parsing colour palette and sprite patterns, creating an adapted palette for less

sparse variants of sprites, and creating training and testing sets through pooling sprites into images and

grouping images for a generation. A convolutional VAE architecture is trained, its (re)construction loss

and visual fidelity are evaluated, a prospective error correction test is performed, and the results are

analysed. We show that the VAE model can effectively capture the main features of 2D game sprites and

if iterated numerous times not only does it produce an endless number of variations, but it also keeps the

game-specific aesthetic properties. It is compared with existing generative methods and improved visual

coherence is found, whilst diversity is saturated. It adds to the exploration of AI-driven creativity in

game design, in particular an increasing number of ways to generate assets and prototypes in a scalable

way.

Keywords: Autoencoder, Image Processing, Game Design, Deep Learning, Procedural Generation,

Latent Representation, Asset Creation, Neural Networks

https://doi.org/10.70454/JRICST.2025.20301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:riyasharma1677@gmail.com
mailto:uetr.kapilkumar@gmail.com

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 2

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

addition of image processing techniques combined with VAE models, the game designer gets flexible and

intelligent asset generation workflows (Kim, and Cho, 2021) [16]. Not only does this cut down on manual

effort, but it also encourages this innovation through the production of game elements in a stylistically

consistent and visually appealing manner. With a goal of understanding the application of

variationalautoencoders to processes within the scope of game designs, this research explores the role of

variationalautoencoders in image processing tasks (Maket al. 2023) [3]. The goal of this study is to learn

how VAEs can aid in the creation, transformation, optimization of visual game assets to end in immersive

and dynamic gaming.

Table 1. Mainstream game platforms and the devices used

Game Platform Company Device

Personal Computer (PC) Microsoft Desktop/laptop computers

Mobile Phone Apple, Google, Samsung,

etc

Smartphones

Xbox Microsoft Xbox game console

PlayStation (PS) Sony PlayStation 1–5

Switch Nintendo Nintendo 3DS/

Nintendo Switch

1.1 VariationalAutoencoders in Image Processing

Generative models like VariationalAutoencoders have risen in popularity as hash classes of tools to learn

latent representations across data so complicated as to images (Vahdat and Kautz, 2020) [4]. Unlike

deterministic autoencoders, VAEs learn a probability distribution over the data and therefore are capable of

producing new data samples similar to the training input. This characteristic proves to be useful in image

processing applications such as image denoising, inpainting, reconstruction, or style transfer. The

compressibility of high-dimensional visual data into low-dimensional latent space by VAEs allows us an

efficient way to work with and manipulate the given data, especially in cases where it is real-time or

resource-limited (Innocent, 2024) [6]. With visual assets becoming more and more immersive and high in

terms of graphics complexity, using VAEs provides developers with an innovative method to create,

transform, and optimize visual assets. Its image processing capabilities are explored to see how this can be

used in game design to replace asset generation and creative workflow (Bengesiet al. 2024) [7].

1.2 Image Generation and Compression in Game Design

High-quality visual assets needed in modern game design rely heavily on memory, processing power, and

storage (Di et al. 2022) [9]. In order to do this, developers resort to using AI-based techniques for efficient

image generation and compression. With learned latent spaces and the ability to synthesize realistic images

through the VariationalAutoencoders, this seems to be a very powerful solution (Şenet al. 2021) [10]. This

allows the creation of different textures, backgrounds, and character designs in game development with

minimal effort. Procedural content generation, a principal trend in contemporary games, is also supported by

VAEs, which enable one to generate, automatically, novel, unique variations of information visual content.

And of course, it improves the development time and improves the creative potential of the designers (Ganet

al. 2020) [11]. By incorporating VAE models into the image processing pipeline, designers could find a

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 3

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

compromise between visual quality and performance optimization of images. In this study VAEs are offered

as a way to help achieve these objectives for dynamic and scalable content creation for games, presenting

new direction for both.

1.3 Mathematical representation of VAEs

The probability distributor 𝑝(𝑥) in aVariationalAutoencoder (VAE) model, that consists of an input data x

and a latent variable Z. The encoder uses the approximation function qϕ(z∣x) to work alongside the decoder

that rebuilds data through the distribution pθ(x∣z). During training the Evidence Lower Bound (ELBO)

receives maximum optimization.

log 𝑝(𝑥) ≥ 𝐸𝑞∅ (𝑍|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝(𝑧))

 A reconstruction loss known as 𝐸𝑞∅ (𝑍|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] determines the distance between the original data

and its reconstructed version.

 The KL divergence term 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝(𝑧)) functions as a regularizer that makes the latent distribution

match the prior distribution (typically AC).

The gradient-based optimization requires the application of a reparameterization trick through

𝑧 = 𝜇 + 𝜎. 𝜖, 𝜖 ≈ 𝑁 (0, 𝐼)

The sampling operation becomes differentiable through this method, allowing backpropagation to be applied

to stochastic variables.

2.0 Related Work

This work examines the ability of the VAE model to produce images and reduce dimensionality. It assesses

its data clustering procedure against the Modified National Institute of Standards and Technology (MNIST)

database and builds new game levels using the VAE model. Potential shortcomings are also acknowledged in

the research, such as difficulties with massive datasets and unclear findings. Future developments that will

optimise VAE's benefits in game design and industrial tasks include tokenisation and the merging of VAE

and GAN models [3] [5].

Although deep learning has made significant strides in many domains, privacy concerns and a lack of data

present challenges for the healthcare industry [13]. This study examines a machine learning-based method

that uses variationalautoencoders (VAEs) to generate synthetic eye-tracking data. The findings support the

VAE model's ability to produce credible results from small datasets, which may enhance classification task

performance [14][15].

3.0 Methodology

3.1 Dataset and Pre-processing

The dataset used in this study is CIFAR-10, consisting of 60,000 colour images grouped into 10 classes with

each image having a size of 32x32 pixels. CIFAR-10 was not originally designed for the purpose of game

development; however, it provides a lot of robust and diverse images that can be used as simple visual assets

needed to fill in the basic visuals of any game environment, like sprites or background object images. Since

the neural network training optimizer works better when pixel values are normalized between 0 and 1, this

preprocessing is needed. For the CNN model as a baseline, by doing a one-hot encoding of the categorical

labels. It is split into training, validation, and test datasets to be able to guarantee proper training and

validation. Furthermore, image augmentations, random flipping, rotation, and zooming are applied to enlarge

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 4

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

the diversity of training images. They strive to feature the wide diversity of visual content that is found in

real game design application situations.

3.2 Model Architecture

Two main neural network architectures are included in the methodology: CNN and VAE. The CNN model is

used as a baseline and is comprised of multiple convolutional layers, batch normalisation, dropout layers,

and finally dense layers having a softmax output as a final output for multi-classification. The analysis uses

this model to potentially evaluate what kind of image patterns the system can recognise and classify. On the

other hand, the core aspect of this research is to implement a VAE. The VAE consists of the encoder, a latent

space sampler, and a decoder. Encoder shrinks our input image into a smaller feature latent space, and the

latent distribution has learned the mean and variance of the latent distribution. The reparameterization trick

guarantees that the stochastic layer can be backpropagated through. The difference between the decoder and

the reconstruction from the latent representations of the input images. In order to learn a smooth, structured

latent space, the VAE is optimised using a loss function consisting of a combination of reconstruction error

and Kullback-Leibler divergence.

Figure 1: CNN and VAE model Architecture

3.3 Integration with Image Processing

The model is used to study whether variational auto encoders can help with image processing in game

design, image reconstruction, and generation. Usually, during game design, you may need to create tonnes of

different image assets that include characters, objects as well as textures. To support this need, the VAE

learns compressed representations of image patterns, and can generate new, stylistically consistent visuals in

the latent space. In pre-processing, filtering, edge detection, and style transformation can be used to make

inputs clearer or more stylish, and in post-processing, they can be used to make generated outputs more or

less stylistic. By combining these methods with the VAE, it is possible to not only generate the original

images but also generate their novel variations, on the one hand, which are very meaningful in procedural

content generation in games. In most workflows, visual assets will usually be a resource-intensive, heavy

graphics resource intensive process, making use of resource-intensive graphics processing tools.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 5

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

3.4 Training Procedure

Training both the CNN and VAE models over the CIFAR-10 dataset is done to optimise the performance of

the outputs of both models. Using Adam optimizer as a natural (adaptive learning in neural networks), and a

number of epochs for training is performed. The target for the CNN is to minimize the categorical cross-

entropy loss as well as monitor the accuracy on training and validation sets. However, VAE learns to learn to

write down a composite loss comprised of MSE or binary cross entropy for image reconstruction and KL

divergence for enforcing the regularity of the latent space. To avoid overfitting, validation accuracy is used

to stop training by implementing EarlyStopping. A learning rate scheduler is also used to adapt the learning

rate in time to optimise the convergence even more. The shuffle and batch size are tuned to keep efficient

learning dynamics. The models are finally validated on unseen data, and the best performing models in this

step are saved and further tested and analysed.

Figure 2: Model flowchart

3.5 Visualization and Evaluation

Visualisation is a very important thing in evaluating the performance and output quality of both the CNN and

VAE models. A CNN accuracy loss plot is created over epochs to see whether there’s anything such as

overfitting or underfitting in the CNN’s training history. It is then demonstrated that prediction accuracy is

assessed again on all ten CIFAR-10 classes using confusion matrices and classification reports. For the VAE,

qualitative insight as to how well the model captures visual features is perhaps offered through an input

versus reconstructed image visual inspection. Furthermore, latent space exploration further allows

interpolation between various image types, illuminating the capability of a model to generate. The VAE

builds images synthesised from random points in the latent space, while still producing novel and game-style

visual content. The outputs are evaluated on the basis of visual coherence, fidelity to original structures, and

stylistic relevance to game design. Combining these evaluation techniques together, the quantities of the

quantitative and the quality in the quality of the model’s effectiveness in supporting game development and

image processing tasks are both proven.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 6

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Thus, unlike the work that is often carried out on the generation of images in games with GANs (Generative

Adversarial Networks), our method relies on VAEs, which provide a better interpretability and control of the

latent space. However, the advantage of GANs over the VAEs is the sharpness of generated images while the

VAEs allow us to manipulate latent variables and perform structured interpolation and blending of various

sprite features in a semantically understandable and more natural manner. Because this helps our approach to

be especially suited for iterative design work flows where there is a need for stylistic control and variability.

In addition, preceding research concentrates mainly on photorealist imagery or abstract concept art. On the

other hand, our model is trained only from pixel-art sprite datasets that are common in indie and retro-style

games such as domain specific insights and outputs.

3.6 Dataset Description

The project gathers its data from 10,000 2D game sprites which were obtained from free public repositories

at OpenGameArt and itch.io. A variety of necessary digital game components including player characters

along with enemies and environmental features and UI icons and power-ups are included within the dataset.

A normalisation process converts images into 64x64 pixels with RGB normalisation for visual stability

throughout the dataset.

The architecture includes:

 The encoder consists of three ReLU-activated convolutional layers and two sequential fully connected

layers which generate the latent mean output (𝒙). 𝜇 and log variance Log σ 2

 Latent space: 32-dimensional

 The decoder part consists of 3 transposed convolutional layers that end with sigmoid activation.

A training process of 100 epochs implemented the Adam optimizer at a learning rate of 0.001 with each

batch containing 64 elements. Model performance is evaluated using:

 Reconstruction loss (binary cross-entropy): average of 0.137

 KL divergence: average of 0.0041

 The Fréchet Inception Distance (FID) measurement on a separate testing set reached 18.2 points.

Through qualitative testing the model demonstrates its ability to produce various sprite variations which stay

true to the core design while such traits as style or colour choices and silhouette shapes can change.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 7

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

4.0 Result and Analysis

Figure 3: Creation of Data Augmentation Pipeline

The CNN architecture utilised for data augmentation of the data in the classification model is presented in

Figure 3. So, the network starts with many interleaved convolutional layers followed by a batch

normalisation layer to stabilise training and to speed up convergence. The maxPooling layers decrease spatial

dimensions progressively for the model to learn hierarchical features, and dropout layers avoid overfitting.

Early layers have 32 filters, while there are 128 filters in deeper layers; a characteristic of increasing feature

complexity. Finally, the output from the final convolution block is squeezed, passed to two dense layers and

finally ends with a 10-node output consisting of class predictions. Post flattening, batch normalisation and

dropout are also used (to maintain performance and generalisation). By learning invariant patterns in the

augmented image space it makes the model more robust and diverse, thus increasing its performance on

unseen data. The augmented pipeline thus provides not only an enrichment of training data, but also the

optimal learning through a layered (stacked), regularised design.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 8

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Figure 4: Training of Models

We trained for 50 epochs with a low accuracy (2.19% loss). Although there was a rapid improvement in the

first 10 epochs, accuracy started to increase above 70%. Now, it has reached 78.64%, which is the accuracy

of the validation set, serving as an indicator of effective learning. Training and validation metrics improved

from epochs 11 to 20, each with the values plateauing at around 80% validation accuracy and a loss-

decreasing trend. The learning rate was also set to 0.001 for this phase. A schedule learning rate reduction

from 0.001 to 0.0005 at epoch 35 improved generalisation as demonstrated by consistently increasing

validation accuracy and decreasing validation loss after epoch 35. The model performs well and converges

with 83.39 % training accuracy, 85.94 % validation accuracy, and a validation loss of 0.4167 by epoch 44.

The progress of the model in this progression demonstrates that it learns the complex features effectively,

and with learning rate adjustments crucial for performance refinement in later stages of training.

Figure 5: Test Accuracy of the Model

The test dataset was applied to the model, and the test accuracy was found to be 84.89% with loss = 0.4482.

This means the model can be done well in classifying unseen data, so it could mean it is generalised well.

The high accuracy score coincides with the reasonably low loss value, which is the difference between

predicted and actual values. Finally, I performed the test on 313 batches (probably coming from the CIFAR-

10 test set of 10,000 images and a batch size of 32) and the evaluation takes 25 seconds, where the average

time per step is 81 milliseconds. This performance demonstrates a well-trained model between the

complexity and learning ability, not too close, not too far, neither overfitting nor under fitting.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 9

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

Figure 6: Plotting of Training History

Here, the trend in the training history of the Convolutional Neural Network (CNN) model is shown, taking

50 epochs for training. The model accuracy on the validation set is depicted in the graph on the left (clear

upward trend). It increases the accuracy steadily during the early epochs and closely approaches the

validation accuracy to around 85%. This implies no sign of overfitting and the model learning effectively.

The model loss for the other visualised on the right and easily decreases with the training. Training and

validation losses decline sharply in the beginning and level off close to a low value by epoch 50. The

closeness of the model’s train and validation metrics indicates that it can generalise well to the unseen data.

The visualisations of these are critical for model learning behaviour and spotting a problem like underfitting

or overfitting.

Figure 7: Visualizing Predictions

Figure 7 shows the sample of the predictions made by the trained CNN model on CIFAR-10 test dataset.

Each image includes a predicted label (e.g., "Pred: cat") and the corresponding ground truth (e.g., "True:

cat"). The visualization highlights that the model accurately classifies most images, particularly those

representing distinct classes like "cat," "airplane," and "frog." However, there are a few mismatches, such as

images predicted as "automobile" but labeled as "cat" suggesting some confusion in visually similar classes.

This type of prediction visualisation is important for evaluation beyond numerical accuracy, as it enables an

understanding of how the model interprets various features. Additionally, this could be used to help in

detecting the pattern in misclassification and directing further refinemodel’spracticalapplication is

demonstrated by the predictions and is of intrinsic value for a qualitative performance assessment.

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 10

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

5. Discussion

A high level of effectiveness of the CNN model on the image classification tasks is shown in the CIFAR-10

dataset experimental results. The model has achieved test accuracy of 84.89%, which demonstrates strong

generalisation to unseen data. Both training and validation accuracies increased consistently over the epochs,

as is shown in Figure 6, and loss values were decreasing over the epochs, meaning that we could learn safely

without overfitting too much. The model has high robustness of training and validation performance in a

narrow gap. Also, Figure 7 gives qualitative validation with correct predictions for most categories.

Misclassifications, especially between alike-looking objects such as cats and automobiles, are demonstrated

to require better feature extraction. A few fluctuations in validation loss could have been due to data

variability, class imbalance, etc in the training history as well. However, the CNN architecture turned out to

be appropriate for recognising image tasks.

6. Conclusion and Recommendation

Finally, the results achieved an accuracy of 84.89%, i.e., 84.89% accuracy on our test set classifying images

from CIFAR10. The training went smoothly and effectively, with the accuracy and loss decreasing at a

constant rate. The prediction visualisations also helped confirm that the model could do well in recognising

most image classes. Such outcomes further support the efficiency of deep learning architectures in particular,

computer vision, i.e., CNNs. Nevertheless, there is some misclassification indicating the need for

improvement. To improve generalisation and solve the problem of class similarity, you should attempt to

experiment with deeper architectures such as ResNet or VGG or use data augmentation techniques.

However, introducing regularisation methods, such as dropout, and batch normalisation, might enhance the

performance even more. Deploying the model with a lightweight inference engine (an example being

TensorFlow Lite) is practical if it leads to use of the model in real-time on edge devices. Future work will

include hyperparameter tuning and ensembling to further enhance accuracy.

Author Contributions

The author has reviewed and approved the final manuscript with equal contribution.

Funding
External funding was not provided for this study.

Conflicts of Interest
The authors state that there are no conflicts of interest related to this paper.

References

[1] Akkem, Y., Biswas, S.K. and Varanasi, A., 2024. A comprehensive review of synthetic data generation

in smart farming by using variationalautoencoder and generative adversarial network. Engineering

Applications of Artificial Intelligence, 131, p.107881.

[2] Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T. and Alameda-Pineda, X., 2020. Dynamical

variationalautoencoders: A comprehensive review. arXiv preprint arXiv:2008.12595.

[3] Mak, H.W.L., Han, R. and Yin, H.H., 2023. Application of variationalautoEncoder (VAE) model and

image processing approaches in game design. Sensors, 23(7), p.3457.

[4] Vahdat, A. and Kautz, J., 2020. NVAE: A deep hierarchical variationalautoencoder. Advances in neural

information processing systems, 33, pp.19667-19679. Mishra, A., Krishna Reddy, S., Mittal, A. and

Murthy, [5] H.A., 2018. A generative model for zero shot learning using conditional

variationalautoencoders. In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops (pp. 2188-2196).

https://doi.org/10.70454/JRICST.2025.20301

https://doi.org/10.70454/JRICST.2025.20301 Vol. 2, No. 3, (2025) Page | 11

Received: 2025-04-16

Accepted: 2025-05-18

Published Online: 2025-07-30

DOI: 10.70454/JRICST.2025.20301

Journal of Recent Innovations in

Computer Science and Technology
E-ISSN: 3050-7030, P-ISSN: 3050-7022

[6] Innocent, E.K., 2024. Enhancing Data Security in Healthcare with Synthetic Data Generation: An

Autoencoder and VariationalAutoencoder Approach (Master's thesis, Oslo Metropolitan University).

[7] Bengesi, S., El-Sayed, H., Sarker, M.K., Houkpati, Y., Irungu, J. and Oladunni, T., 2024. Advancements

in Generative AI: A Comprehensive Review of GANs, GPT, Autoencoders, Diffusion Model, and

Transformers. IEEe Access.

[8] Elbattah, M.; Loughnane, C.; Guérin, J.-L.; Carette, R.; Cilia, F.; Dequen, G. VariationalAutoencoder for

Image-Based Augmentation of Eye-Tracking Data. J. Imaging 2021, 7, 83.

https://doi.org/10.3390/jimaging7050083

[9] Di Fan, Y.W., Liu, H., Chen, Y. and Wei, A., Design and Implementation of Unity3D-based Image

Compression Coding Gamification Teaching System.

[10] Şen, D., Küçükkaykı, H.T. and Sürer, E., 2021. Automated game mechanics and aesthetics generation

using neural style transfer in 2d video games. BilişimTeknolojileriDergisi, 14(3), pp.287-300.

[11] Gan, Z., Chai, X., Zhang, J., Zhang, Y. and Chen, Y., 2020. An effective image compression–

encryption scheme based on compressive sensing (CS) and game of life (GOL). Neural Computing and

Applications, 32, pp.14113-14141.

[12] Xu, S., Guo, C., Zhu, Y., Liu, G. and Xiong, N., 2023. CNN-VAE: An intelligent text representation

algorithm. The Journal of Supercomputing, 79(11), pp.12266-12291.

[13] Akbari, M. and Liang, J., 2018, April. Semi-recurrent CNN-based VAE-GAN for sequential data

generation. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 2321-2325). IEEE.

[14] Metlapalli, A.C., Muthusamy, T. and Battula, B.P., 2020. Classification of Social Media Text Spam

Using VAE-CNN and LSTM Model. Ingénierie des Systèmes d Inf., 25(6), pp.747-753.

[15] Liu, J., Yang, G., Li, X., Hao, S., Guan, Y. and Li, Y., 2022. A deep generative model based on CNN-

CVAE for wind turbine condition monitoring. Measurement Science and Technology, 34(3), p.035902.

[16] Kim, J.Y. and Cho, S.B., 2021. Deep CNN transferred from VAE and GAN for classifying irritating

noise in automobile. Neurocomputing, 452, pp.395-403.

https://doi.org/10.70454/JRICST.2025.20301

	1. Introduction
	1.1 VariationalAutoencoders in Image Processing
	1.2 Image Generation and Compression in Game Design
	1.3 Mathematical representation of VAEs

	3.0 Methodology
	3.1 Dataset and Pre-processing
	3.2 Model Architecture
	3.3 Integration with Image Processing
	3.4 Training Procedure
	3.5 Visualization and Evaluation
	3.6 Dataset Description

	4.0 Result and Analysis
	5. Discussion
	6. Conclusion and Recommendation

